9 resultados para interstitial diffusion
em Publishing Network for Geoscientific
Resumo:
The depth variations in the major chemical components dissolved in interstitial waters from the Tonga margin (ODP Site 841) are much more pronounced than those usually observed in deep-sea sediments. The extensive alteration of volcanic Miocene sediments to secondary minerals such as analcime, clays, and thaumasite forms a CaCl2-rich brine. The brine results from a high exchange of Ca to Na, K, and Mg and an increase in Cl concentrations due to removal of H2O from the fluid during the authigenesis of hydrous minerals. The formation of thaumasite could have partly controlled the concentration of dissolved SO4, HCO3, and Ca in the Miocene sediments. The strontium isotopic signature of the interstitial water suggests that alteration of the volcanic Miocene sediments occurred a long time after sedimentation. A transient diffusion model indicates that molecular diffusion was not prevented by lithologic barriers and that the formation of secondary minerals in the Miocene sediment occurred over a short period of time (e.g.,=1000 years). The extensive diagenetic processes in the Tonga margin were mostly caused by the recent intrusion of andesite sills and dikes into the Miocene sediments.
Resumo:
A review of interstitial water samples collected from Sites 1003-1007 of the Bahamas Transect along with a shore-based analysis of oxygen and carbon isotopes, minor and trace elements, and sediment chemistry are presented. Results indicate that the pore-fluid profiles in the upper 100 meters below seafloor (mbsf) are marked by shifts between 20 and 40 mbsf that are thought to be caused by changes in sediment reactivity, sedimentation rates, and the influence of strong bottom currents that have been active since the late Pliocene. Pore-fluid profiles in the lower Pliocene-Miocene sequences are dominated by diffusion and do not show significant evidence of subsurface advective flow. Deeper interstitial waters are believed to be the in situ fluids that have evolved through interaction with sediments and diffusion. Pore-fluid chemistry is strongly influenced by carbonate recrystallization processes. Increases in pore-fluid Cl- and Na+ with depth are interpreted to result mainly from carbonate remineralization reactions that are most active near the platform margin. A lateral gradient in detrital clay content observed along the transect, leads to an overall lower carbonate reactivity, and enhances preservation of metastable aragonite further away from the platform margin. Later stage burial diagenesis occurs at slow rates and is limited by the supply of reactive elements through diffusion.
Resumo:
Leg 119 of the Ocean Drilling Program (ODP) provided the first opportunity to study the interstitial-water chemistry of the eastern Antarctic continental margin. Five sites were cored in a northwest-southeast transect of Prydz Bay that extended from the top of the continental slope to within 30 km of the coastline. Geological studies of the cores reveal a continental margin that has evolved through terrestrial, glacial, and glacial-marine environments. Chemical and stable isotopic analyses of the interstitial-waters were performed to determine the types of depositional environments and the diagenetic and hydrologic processes that are operating in this unusual marine environment. Highly compacted glacial sediments provide an effective barrier to the vertical diffusion of interstitial-water solutes. Meteoric water from the Antarctic continent appears to be flowing into Prydz Bay sediments through the sequence of terrestrial sediments that lie underneath the glacial sediments. The large amounts of erosion associated with glacial advances appear to have had the effect of limiting the amount of marine organic matter that is incorporated into the sediments on the continental shelf. Although all of the sites cored in Prydz Bay exhibit depletions in dissolved sulfate with increasing depth, the greatest bacterial activity is associated with a thin layer of diatom ooze that coats the seafloor of the inner bay. Results of alkalinity modeling, thermodynamic calculations, and strontium analyses indicate that (1) ocean bottom waters seaward of Site 740 are undersaturated with respect to both calcite and aragonite, (2) interstitial waters at each site become saturated or supersaturated with respect to calcite and aragonite with increasing depth, (3) precipitation of calcium carbonate reduces the alkalinity of the pore waters with increasing depth, and (4) recrystallization of aragonite to calcite accounts for 24% of the pore-water strontium. Weathering of unstable terrestrial debris and cation exchange between clay minerals and pore fluids are the most probable chemical processes affecting interstitial water cation gradients.
Resumo:
Interstitial water samples from Leg 129, Sites 800, 801, and 802 in the Pigafetta and Mariana basins (central western Pacific), have been analyzed for major elements, B, Li, Mn, Sr, and 87Sr/86Sr. At all sites waters show enrichment in Ca and Sr and are depleted in Mg, K, Na, SO4, B, alkalinity, and 87Sr compared to seawater. These changes are related to alteration of basaltic material into secondary smectite and zeolite and recrystallization of biogenic carbonate. Water concentration depth profiles are characterized by breaks due to the presence of barriers to diffusion such as chert layers at Sites 800 and 801 and highly cemented volcanic ash at Site 802. In Site 800, below a chert layer, concentration depth profiles are vertical and reflect slight alteration of volcanic matter, either in situ or in the upper basaltic crust. Release of interlayer water from clay minerals is likely to induce observed Cl depletions. At Site 801, two units act as diffusion barrier and isolate the volcaniclastic sediments from ocean and basement. Diagenetic alteration of volcanic matter generates a chemical signature similar to that at Site 800. Just above the basaltic crust, interstitial waters are less evolved and reflect low alteration of the crust, probably because of the presence in the sediments of layers with low diffusivities. At Site 802, in Miocene tuffs, the chemical evolution generated by diagenetic alteration is extreme (Ca = 130 mmol, 87Sr/86Sr = 0.7042 at 83 meters below seafloor) and is accompanied by an increase of the Cl content (630 mmol) due to water uptake in secondary hydrous phases. Factors that enhance this evolution are a high sediment accumulation rate, high cementation preventing diffusive exchange and the reactive composition of the sediment (basaltic glass). The chemical variation is estimated to result in the alteration of more than 20% of the volcanic matter in a nearly closed system.
Resumo:
Concentrations of dissolved Ca2+, Sr2+, Mg2+, SO4[2-], and alkalinity were measured in pore waters squeezed from sediments taken from ODP Holes 626C and 626D in the Florida Straits; Holes 627A and 627B, 628A, and 630A and 630C north of Little Bahama Bank; Holes 631 A, 632A and 632B, and 633A in Exuma Sound; and Holes 634A and 635A and 635B in Northeast Providence Channel. These data are compared with the mineralogy and strontium content of the sediments from which the waters were squeezed. Contrasts in the geochemical profiles suggest that significantly different processes govern pore-water signatures at each group of sites. In Little Bahama Bank, strong positive Ca2+ gradients are correlated with weak negative Mg2+ profiles. These trends are analogous to those seen at DSDP sites where carbonate deposits immediately overlie mafic basement, but as the depth to basement may be in excess of 5000 m, we suggest that diffusion gradients are initiated by an underlying sedimentary unit. In contrast, Ca2+ and Mg2+ gradients in Exuma Sound are not developed to any appreciable extent over similar thicknesses of sediment. We suggest that the pore-water chemistry in these deposits is principally controlled by diagenetic reactions occurring within each sequence. The location and extent of carbonate diagenesis can be estimated from dissolved Sr2+ profiles. In Little Bahama Bank and Exuma Sound, Sr2+ concentrations reach a maximum value of between 700 and 1000 µmol/L. Although the depths at which these concentrations are achieved are different for the two areas, the corresponding age of the sediment at the dissolved Sr2+ maximum is similar. Consequently, the diffusive flux of Sr2+ and the calculated rates of recrystallization in the two areas are likewise of a similar magnitude. The rates of recrystallization we calculate are lower than those found in some DSDP pelagic sites. As the waters throughout most of the holes are saturated with respect to SrSO4, celestite precipitation may cause erroneously low Sr2+ production rates and, consequently, low calculated rates of recrystallization. We therefore encourage only the discriminate use of Sr2+ profiles in the quantification of diagenetic processes.
Resumo:
The concentration changes in pore waters of dissolved calcium, magnesium, sulfate, strontium, and silica and of alkalinity are controlled by diagenetic reactions occurring within the biogenic sediments of DSDP Sites 572, 573, and 574. Downcore increases in dissolved Sr2 + indicate recrystallization of calcite, and increases in dissolved SiO2 reflect dissolution of amorphous silica. Minor gradients in dissolved Ca(2+) and Mg(2+) suggest little if any influence from reactions involving volcanic sediments or basalt. Differences in interstitial water profiles showing the downhole trends of these chemical species mark variations in carbonate and silica diagenesis, sediment compositions, and sedimentation rate histories among the sites. The location and extent of carbonate diagenesis in these sediments are determined from Sr/Ca distributions between the interstitial waters and the bulk carbonate samples. Pore water strontium increases in the upper 100 to 250 m of sediment are assumed to reflect diffusion from underlying zones where calcite recrystallization has occurred. On the basis of calculations of dissolved strontium production and comparisons between observed and calculated "equilibrium" Sr/Ca ratios of the solids, approximately 30 to 50% of the carbonate has recrystallized in these deeper intervals. These estimates agree with the observed amounts of chalk at these sites. Variations in Sr/Ca ratios of these carbonates reflect differences in calcareous microfossil content, in diagenetic history, and, possibly, in changes in seawater Sr/Ca with time. Samples of porcelanite recovered below 300 m at Site 572 suggest formation at temperatures 20 to 30° C greater than ones estimated assuming oceanic geothermal gradients from sedimentary sections similar to those recovered on Leg 85. The higher temperatures may partially account for higher Sr/Ca ratios determined for recrystallized carbonates from this site.
Resumo:
Ammonium (NH4+) concentration profiles in piston-core sediments of the Carolina Rise and Blake Ridge generally have linear concentration profiles within the sulfate reduction zone (Borowski, 1998). Deep Sea Drilling Project (DSDP) Site 533, located on the Blake Ridge, also displayed a linear ammonium concentration profile through the sulfate reduction zone and the profile linearity continues into the upper methanogenic zone to a depth of ~200 meters below seafloor (mbsf), where the first methane gas hydrates probably occur (Jenden and Gieskes, 1983, doi:10.2973/dsdp.proc.76.114.1983; Kvenvolden and Barnard, 1983, doi:10.2973/dsdp.proc.76.106.1983). Sediments from the Ocean Drilling Program (ODP) Leg 164 deep holes (Sites 994, 995, and 997) also exhibit linear ammonium profiles above the top of the gas hydrate zone (~200 mbsf) (Paull, Matsumoto, Wallace, et al., 1996, doi:10.2973/odp.proc.ir.164.1996). We hypothesized that a possible cause of linear ammonium profiles was diffusion of ammonium from a concentrated ammonium source at depth. We further reasoned that if this ammonium were produced by microbial fermentation reactions at depth, that a comparison of the nitrogen isotopic composition of sedimentary organic nitrogen and the nitrogen with pore-water ammonium would test this hypothesis. Convergence with depth of d15N values of the nitrogen source (sedimentary organic matter) and the nitrogen product (dissolved NH4+) would strongly suggest that ammonium was produced within a particular depth zone by microbial fermentation reactions. Here, we report d15N values of pore-water ammonium from selected interstitial water (IW) samples from Site 997, sampled during ODP Leg 164.
Resumo:
Interstitial waters recovered from Ocean Drilling Program, Leg 161, site 976 in the western Mediterranean Sea are used in conjunction with a numerical model to constrain the delta18O of seawater in the basin since the Last Glacial Maximum, including Sapropel Event 1. To resolve the oxygen isotopic composition of the deep Mediterranean, we use a model that couples fluid diffusion with advective transport, thus producing a profile of seawater delta18O variability that is unaffected by glacial-interglacial variations in marine temperature. Comparing our reconstructed seawater delta18O to recent determinations of 1.0 per mil for the mean ocean change in glacial-interglacial delta18O due to the expansion of global ice volume, we calculate an additional 0.2 per mil increase in Mediterranean delta18O caused by local evaporative enrichment. This estimate of delta18O change, due to salinity variability, is smaller than previous studies have proposed and demonstrates that Mediterranean records of foraminiferal calcite delta18O from the last glacial period include a strong temperature component. Paleotemperatures determined in combination with a stacked record of foraminiferal calcite depict almost 9°C of regional cooling for the Last Glacial Maximum. Model results suggest a decrease of ~1.1 per mil in seawater delta18O relative to the modern value caused by increased freshwater input and reduced salinity accompanying the formation of the most recent sapropel. The results additionally indicate the existence of isotopically light water circulating down to bottom water depths, at least in the western Mediterranean, supporting the existence of an 'anti-estuarine' thermohaline circulation pattern during Sapropel Event 1.