131 resultados para interplanetary scintillation (IPS)
em Publishing Network for Geoscientific
Resumo:
An experiment was conceived in which we monitored degradation of GlcDGD. Independent of the fate of the [14C]glucosyl headgroup after hydrolysis from the glycerol backbone, the 14C enters the aqueous or gas phase whereas the intact lipid is insoluble and remains in the sediment phase. Total degradation of GlcDGD then is obtained by combining the increase of radioactivity in the aqueous and gaseous phases. We chose two different sediment to perform this experiment. One is from microbially actie surface sediment sampled in February 2010 from the upper tidal flat of the German Wadden Sea near Wremen (53° 38' 0N, 8° 29' 30E). The other one is deep subsurface sediments recovered from northern Cascadia Margin during Integrated Ocean Drilling Program Expedition 311 [site U1326, 138.2 meters below seafloor (mbsf), in situ temperature 20 °C, water depth 1,828 m. We performed both alive and killed control experiments for comparison. Surface and subsurface sediment slurry were incubated in the dark at in situ temperature, 4 °C and 20 °C for 300 d, respectively. The sterilized slurry was stored at 20 °C. All incubations were carried out under N2 headspace to ensure anaerobic conditions. The sampling frequency was high during the first half-month, i.e., after 1, 2, 7, and 14 d; thereafter, the sediment slurry was sampled every 2 months. At each time point, samples were taken in triplicate for radioactivity measurements. After 300 d of incubation, no significant changes of radioactivity in the aqueous phase were detected. This may be the result of either the rapid turnover of released [14C] glucose or the relatively high limit of detection caused by the slight solubility (equivalent to 2% of initial radioactivity) of GlcDGD in water. Therefore, total degradation of GlcDGD in the dataset was calculated by combining radioactivity of DIC, CH4, and CO2, leading to a minimum estimate.
Resumo:
The scope of this PhD thesis was the hydrogeological conceptualisation of the Upper Ouémé river catchment in Benin. The study area exceeds 14,500 km**2 and is underlain by a crystalline basement. At this setting the typical sequence of aquifers - a regolith aquifer at the top and a fractured bedrock aquifer at the bottom - is encountered, which is found in basement areas all over Africa and elsewhere in the world. The chosen regional approach revealed important information about the hydrochemistry and hydrogeology of this catchment. Based on the regional conceptual model a numerical groundwater flow model was designed. The numerical model was used to estimate the impact of climate change on the regional groundwater resources. This study was realised within the framework of the German interdisciplinary research project IMPETUS (English translation: "Integrated approach to the efficient management of scarce water resources in West Africa"), which is jointly managed by the German universities of Bonn and Cologne. Since the year 2000 the Upper Ouémé catchment was the principal target for investigations into the relevant processes of the regional water cycle. A first study from 2000 to 2003 (Fass, 2004, http://nbn-resolving.de/urn:nbn:de:hbz:5n-03849) focused on the hydrogeology of a small local catchment (~30 km**2). In the course of this thesis five field campaigns were underdone from the year 2004 to 2006. In the beginning of 2004 a groundwater monitoring net was installed based on 12 automatic data loggers. Manual piezometric measurements and the sampling of groundwater and surface water were realised for each campaign throughout the whole study area. Water samples were analysed for major ions, for a choice of heavy metals and for their composition by deuterium, oxygen-18 and tritium. The numerical model was performed with FEFLOW. The hydraulic and hydrochemical characteristics were described for the regolith aquifer and the bedrock aquifer. The regolith aquifer plays the role of the groundwater stock with low conductivity while the fractures of the bedrock may conduct water relatively fast towards extraction points. Flow in fractures of the bedrock depends on the connectivity of the fracture network which might be of local to subregional importance. Stable isotopes in combination with hydrochemistry proved that recharge occurs on catchment scale and exclusively by precipitation. Influx of groundwater from distant areas along dominant structures like the Kandi fault or from the Atacora mountain chain is excluded. The analysis of tritium in groundwater from different depths revealed the interesting fact of the strongly rising groundwater ages. Bedrock groundwater may possibly be much older than 50 years. Equilibrium phases of the silicate weathering products kaolinite and montmorillonite showed that the deeper part of the regolith aquifer and the bedrock aquifer feature either stagnant or less mobile groundwater while the shallow aquifer level is influenced by seasonal groundwater table fluctuations. The hydrochemical data characterised this zone by the progressive change of the hydrochemical facies of recently infiltrated rainwater on its flow path into deeper parts of the aquifers. Surprisingly it was found out that seasonal influences on groundwater hydrochemistry are minor, mainly because they affect only the groundwater levels close to the surface. The transfer of the hydrogeological features of the Upper Ouémé catchment into a regional numerical model demanded a strong simplification. Groundwater tables are a reprint of the general surface morphology. Pumping or other types of groundwater extraction would have only very local impact on the available groundwater resources. It was possible to integrate IMPETUS scenario data into the groundwater model. As a result it was shown that the impact of climate change on the groundwater resources until the year 2025 under the given conditions will be negligible due to the little share of precipitation needed for recharge and the low water needs for domestic use. Reason for concern is the groundwater quality on water points in the vicinity of settlements because of contamination by human activities as shown for the village of Dogué. Nitrate concentrations achieved in many places already alerting levels. Health risks from fluoride or heavy metals were excluded for the Upper Ouémé area.
Resumo:
We carried out short term pCO2/pH perturbation experiments in the coastal waters of the South China Sea to evaluate the combined effects of seawater acidification (low pH/high pCO2) and solar UV radiation (UVR, 280-400 nm) on photosynthetic carbon fixation of phytoplankton assemblages. Under photosynthetically active radiation (PAR) alone treatments, reduced pCO2 (190 ppmv) with increased pH resulted in a significant decrease in the photosynthetic carbon fixation rate (about 23%), while enriched pCO2 (700 ppmv) with lowered pH had no significant effect on the photosynthetic performance compared to the ambient level. The apparent photosynthetic efficiency decreased under the reduced pCO2 level, probably due to C-limitation as well as energy being diverged for up-regulation of carbon concentrating mechanisms (CCMs). In the presence of UVR, both UV-A and UV-B caused photosynthetic inhibition, though UV-A appeared to enhance the photosynthetic efficiency under lower PAR levels. UV-B caused less inhibition of photosynthesis under the reduced pCO2 level, probably because of its contribution to the inorganic carbon (Ci)-acquisition processes. Under the seawater acidification conditions (enriched pCO2), both UV-A and UV-B reduced the photosynthetic carbon fixation to higher extents compared to the ambient pCO2 conditions. We conclude that solar UV and seawater acidification could synergistically inhibit photosynthesis.
Resumo:
Late Cretaceous (100-73 Ma) pelagic limestones were measured for helium concentration and isotopic composition to characterize the interplanetary dust flux using 3He as a tracer. In the Bottaccione section near Gubbio, Italy, three intervals of elevated 3He concentration were detected: K1 in the Campanian stage at ~79 Ma, K2 in the Santonian stage at ~ 85 Ma, and K3 in the Turonian stage at ~91 Ma. All three of these episodes are associated with high 3He/4He and 3He/non-carbonate ratios, consistent with their derivation from an enhanced extraterrestrial 3He flux rather than decreased carbonate sedimentation or dissolution. While K2 is modest in magnitude and duration and thus is of limited significance, K1 and K3 are each identified by a few myr interval with an ~4-fold enhancement in mean 3He flux compared with pre-event levels. Samples from ODP Hole 762C in the Indian Ocean spanning both K2 and K3 (93-83 Ma) confirm the presence of a peak in the Turonian stage, suggesting that K3 is a global event. The K1 and K3 3He events are similar in most respects to the two peaks previously detected in the Cenozoic, suggesting a similar origin. These have been attributed to a major asteroid collision in the Late Miocene and to a shower of either comets or asteroids in the Late Eocene. Based on the age and temporal evolution of K1, we suggest that it most likely records the collision which produced the Baptistina asteroid family independently dated at ~80 Ma. The K3 event is less easily explained. It is characterized by an unusually spiky and erratic temporal progression, suggesting an unusual abundance of very 3He rich particles not previously seen in the sedimentary 3He record. We suggest this episode arises either from a comet shower or from an asteroid shower possibly associated with dust-producing lunar impacts.