20 resultados para intergrowths
em Publishing Network for Geoscientific
Resumo:
Tochilinite (approximately FeS(Mg,Fe)(OH)2) is locally abundant in Hole 1068A serpentinites from Cores 173-1068A-21R and 22R. It occurs in veins, as fillings in void space, and in intergrowths with serpentine and andradite. An apparently related mineral, but with Ca and Al largely replacing Mg, occurs in association with, and possibly as a replacement of, pyrrhotite in serpentinite breccias from the bottom of Core 173-1068A-20R. The transition from Mg-Fe-rich brucite tochilinites to Ca- and S-rich carbonate tochilinites is consistent with increasing sulfur and oxygen activity upsection. Tochilinite has been reported at other sites on the Iberia Abyssal Plain and is abundant to the point of being a rock-forming mineral in several samples from Site 1068. Rather than being a mineralogical curiosity, tochilinite appears to be common and a major sink for sulfur in the upper serpentinites of the Iberia Abyssal Plain.
Resumo:
Bottom sediments of the Markov Deep contain rather large (>0.1 mm) grains of native minerals and intermetallides of noble and nonferrous metals that can be concentrated in placers. Intermetallides of Pt and Fe are likely to be derivates of the gold-hematite-barite assemblage that forms at late (low-depth) stages of hydrothermal massive sulfide formation. Mineral association of native forms of lead, tin, and copper with Zn-bearing copper may be related to hydrothermal transformation of ultrabasic and basic rocks accompanied by massive sulfide copper mineralization. The association of these minerals of native elements in bottom sediments can also serve as a prospecting guide for sulfide mineralization both at the Sierra Leone site, in particular, and on the seafloor, in general.
Resumo:
The transition from magmatic crystallization to high-temperature metamorphism in deep magma chambers (or lenses) beneath spreading ridges has not been fully described. High-temperature microscopic veins found in olivine gabbros, recovered from Ocean Drilling Program Hole 735B on the Southwest Indian Ridge during Leg 176, yield information on the magmatic-hydrothermal transition beneath spreading ridges. The microscopic veins are composed of high-temperature minerals, (i.e., clinopyroxene, orthopyroxene, brown amphibole, and plagioclase). An important feature of these veins is the 'along-vein variation' in mineralogy, which is correlated with the magmatic minerals that they penetrate. Within grains of magmatic plagioclase, the veins are composed of less calcic plagioclase. In grains of olivine, the veins are composed of orthopyroxene + brown amphibole + plagioclase. In clinopyroxene grains, the veins consist of plagioclase + brown amphibole and are accompanied by an intergrowth of brown amphibole + orthopyroxene. The mode of occurrence of the veins cannot be explained if these veins were crystallized from silicate melts. Consequently, these veins and nearby intergrowths were most likely formed by the reaction of magmatic minerals with fluid phases under the conditions of low fluid/rock ratios. Very similar intergrowths of brown amphibole + orthopyroxene are observed in clinopyroxene grains with 'interfingering' textures. It is believed, in general, that the penetration of seawater does not predate the ductile deformation within Layer 3 gabbros of the slow-spreading ridges. If this is the case, the fluid responsible for the veins did not originate from seawater because the formation of the veins and the interfingering textures preceded ductile deformation and, perhaps, complete solidification of the gabbroic crystal mush. It has been proposed, based on fluid inclusion data, that the exsolution of fluid from the latest-stage magma took place at temperatures >700°C in the slow-spreading Mid-Atlantic Ridge at the Kane Fracture Zone (MARK) area. No obvious mineralogical evidence, however, has been found for these magmatic fluids. The calculated temperatures for the veins and nearby intergrowths found in Hole 735B gabbros are up to 1000°C, and these veins are the most plausible candidate for the mineralogical expression of the migrating magmatic fluids.
Resumo:
A paleomagnetic study was made of 12 samples of trachytic basalt from the base of ODP Hole 698A on the Northeast Georgia Rise (southwest Atlantic) and four samples of andesitic basalt and nine samples of volcanic breccia from the base of ODP Hole 703A on the Meteor Rise (southeast Atlantic). The magnetic intensities of the Hole 703A samples are anomalously low, possibly reflecting alteration effects. The mean magnetic intensity of the Hole 698A samples is high, and compatible with the model of Bleil and Petersen (1983) for the variation of magnetic intensity with age in oceanic basalts, involving progressive low-temperature oxidation of titanomagnetite to titanomaghemite for some 20 m.y. followed by inversion to intergrowths of magnetite and other Fe-Ti oxides during the subsequent 100 m.y. These results support the interpretation of the Hole 698A basalts as true oceanic basement of Late Cretaceous age rather than a younger intrusion. Well-defined stable components of magnetization were identified from AF and thermal demagnetization of the Hole 698A basalts, and less well-defined components were identified for the Hole 703A samples. Studies of the magnetic homogeneity of the Hole 698A basalts, involving harmonic analysis of the spinner magnetometer output, indicate the presence of an unevenly distributed low-coercivity component superimposed on the more homogeneous high-coercivity characteristic magnetization. The former component is believed to reside in irregularly distributed multidomain magnetite grains formed along cracks within the basalt, whilst the latter resides in more uniformly distributed finer magnetic grains. The inclination values for the high-coercivity magnetization of five Hole 698A basalt samples form an internally consistent set with a mean value of 59° ± 5°. The corresponding Late Cretaceous paleolatitude of 40° ± 5° is shallower than expected for this site but is broadly compatible with models for the opening of the South Atlantic involving pivoting of South America away from Africa since the Early Cretaceous. The polarity of the stable characteristic magnetization of the Site 698 basalts is normal. This is consistent with their emplacement during the long Campanian to Maestrichtian normal polarity Chron C33N.
Resumo:
Twenty-seven samples from the Leg 83 section of Hole 504B have been investigated using magnetic, optical, and electron optical methods. The primary magnetic mineral to crystallize was titanomagnetite of approximate composition Fe2.4Ti0.6O4 (TM60), but none survives, nor is there evidence of titanomaghemite produced by oxidation of TM60. The average measured magnetic properties can be interpreted in terms of magnetite, Fe3O4, having average grain size of <1 µm and present in average volume concentration of - 0.5%. The intensity of the natural remanent magnetization (NRM) of the rocks could also be accounted for as being a thermoremanence carried by this mineral. Although the heterogeneity of the titanomagnetite grains could be detected optically, the texture of the intergrown phases is poorly developed. In some samples from the massive units of the lower part of the section, trellis patterns were visible. The Fe3O4 present in the intergrowths is too intimately mixed with the other intergrown phases to be revealed by electron microprobe analysis that simply returns the bulk composition of the intergrowth (oxidized TM60). The path by which the mineral assemblage evolved from TM60 to an Fe304-containing intergrowth, under the temperature and pressure conditions obtaining in the Leg 83 section, makes interesting speculation. Deuteric oxidation, maghemitization/inversion, or some hypothetical low-temperature/high-pressure oxidation by a leaching-of-iron process may all play roles.
Resumo:
Mineralogy and geochemistry of sulfide-bearing rocks and ores discovered within the Menez Gwen Hydrothermal Field are studied. Samples were taken during Cruise 49 of R/V Akademik Mstislav Keldysh of the p.p. Shirshov Institute of Oceanology. Mineral composition of rocks and ores were studied by traditional methods of optical microscopy, scanning electron microscopy (CAMSCAN), and microprobe analysis (EPMA SX-50). Contents of trace elements were determined by laser ablation inductively coupled plasma - mass spectrometry (LA-ICP-MS). Zn-Cu ore comprises zonal sulfide chimney intergrowths. Numerous Se-rich copper ore fragments occur in volcanomictic layered gritstones and/or barite slabs. Mineral composition, zonality and association of trace elements in ore are typical of black smokers formed at the basalt base near the Azores Triple Junction in the MAR. Obtained results make it possible to reconstruct formation history of the Menez Gwen Hydrothermal Field into the high-temperature (Cu-Se association in ore clasts), medium-temperature (Zn-Cu-As association in ore), and recent (Ba-SiO2 association) stages.
Resumo:
Not all boninites are glassy lavas. Those of Hole 458 in the Mariana fore-arc region are submarine pillow lavas and more massive flows in which glass occurs only in quenched margins. Pillow and flow interiors have abundant Plagioclase spherulites, microlites, or even larger crystals but can be recognized as boninites by (1) occurrence of bronzite, (2) presence of augite-bronzite microphenocryst intergrowths, and (3) reversal of the usual basaltic groundmass crystallization sequence of plagioclase-augite to augite-plagioclase. The latter is accentuated by sharply contrasting augite and Plagioclase crystal morphologies near pillow margins, a consequence of rapid cooling rates. This crystallization sequence appears to be a consequence of boninites having higher SiO2 and Mg/Mg + Fe than basalts but lower CaO/Al2O3. Microprobe data are used to illustrate the effects of rapid cooling on the compositions of pyroxene and microphenocrysts in a glassy boninite sample and to estimate temperatures of crystallization of coexisting bronzite and augite. A range from 1320°C to 1200°C is calculated with an average of 1250°C. This is higher by 120°-230° than the known range for western Pacific arc tholeiites and by over 300° than for calc-alkalic andesites. Boninites of Hole 458 lack olivine and clinoenstatite but are otherwise chemically and petrographically similar to boninites that have these minerals. In order to distinguish the two types, the Hole 458 lavas are here termed boninites and the others are termed olivine boninites. Arc tholeiite pillow lavas from Holes 458 and 459B are briefly described and their textures compared to fractionated, moderately iron-enriched, abyssal tholeiites. Massive tholeiite flows contain striking quartz-alkali feldspar micrographic intergrowths with coarsely spherulitic textures resulting from in situ magmatic differentiation. Such intergrowths are rare in massive abyssal tholeiites cored by DSDP and probably occur here because arc tholeiites have higher normative quartz at comparable degrees of iron enrichment - a result of higher oxygen fugacities and earlier separation of titanomagnetite - than abyssal tholeiites.
Resumo:
Basalt underlying early Campanian chalk at Deep Sea Drilling Project (DSDP) Site 163 is divided into seven extrusive cooling units bounded by glassy margins. The margins have dips of 15° to 70°, suggestive of pillow flows rather than tabular flows. The margins are fresh sideromelane (glass) grading inward to opaque and reddish-brown globules containing microcrystalline material with radial, undulose extinction. Relative to adjacent sideromelane, the reddish-brown globules are enriched in sodium and calcium, whereas the opaque globules are depleted in these elements and enriched in iron and magnesium. It appears that basalt just inside the pillow margins has differentiated in place into globules of two distinct compositions. This globule zone grades inward to less rapidly cooled pyroxene varioles and intergrowths of plagioclase and opaque minerals. In the center of the thicker cooling units, the texture is diabasic. Alteration and calcite vein abundance are greatest at pillow margins and decrease inward; the interior of the thickest cooling unit is only slightly altered, and calcite veins are absent. Chemical analysis of whole rock by atomic absorption spectrophotometry, and of sideromelane by electron microprobe, indicates that the rock is a slightly weathered tholeiite. The atomic absorption analyses, except the one nearest the top of the basalt, are relatively uniform and similar to the sideromelane microprobe analyses, including those near the top of the basalt. This suggests that deep penetration is not necessary to get through the severely altered layer at the basalt surface, and that within this altered layer, analyses of sideromelane may be more representative of crustal composition than analyses of whole rock.
Resumo:
With various low-temperature experiments performed on magnetic mineral extracts of marine sedimentary deposits from the Argentine continental slope near the Rio de la Plata estuary, a so far unreported style of partial magnetic self-reversal has been detected. In these sediments the sulphate-methane transition (SMT) zone is situated at depths between 4 and 8 m, where reductive diagenesis severely alters the magnetic mineral assemblage. Throughout the sediment column magnetite and ilmenite are present together with titanomagnetite and titanohematite of varying compositions. In the SMT zone (titano-)magnetite only occurs as inclusions in a siliceous matrix and as intergrowths with lamellar ilmenite and titanium-rich titanohematite, originating from high temperature deuteric oxidation within the volcanic host rocks. These abundant structures were visualized by scanning electron microscopy and analysed by energy dispersive spectroscopy. Warming of field-cooled and zero-field-cooled low-temperature saturation remanence displays magnetic phase transitions of titanium-rich titanohematite below 50 K and the Verwey transition of magnetite. A prominent irreversible decline characterizes zero-field cooling of room temperature saturation remanence. It typically sets out at ~210 K and is most clearly developed in the lower part of the SMT zone, where low-temperature hysteresis measurements identified ~210 K as the blocking temperature range of a titanohematite phase with a Curie temperature of around 240 K. The mechanism responsible for the marked loss of remanence is, therefore, sought in partial magnetic self-reversal by magnetostatic interaction of (titano-)magnetite and titanohematite. When titanohematite becomes ferrimagnetic upon cooling, its spontaneous magnetic moments order antiparallel to the (titano-)magnetite remanence causing an drastic initial decrease of global magnetization. The loss of remanence during subsequent further cooling appears to result from two combined effects (1) magnetic interaction between the two phases by which the (titano-)magnetite domain structure is substantially modified and (2) low-temperature demagnetization of (titano-)magnetite due to decreasing magnetocrystalline anisotropy. The depletion of titanomagnetite and superior preservation of titanohematite is characteristic for strongly reducing sedimentary environments. Typical residuals of magnetic mineral assemblages derived from basaltic volcanics will be intergrowths of titanohematite lamellae with titanomagnetite relics. Low-temperature remanence cycling is, therefore, proposed as a diagnostic method to magnetically characterize such alteration (palaeo-)environments.
Resumo:
Secondary minerals filling veins and vesicles in volcanic basement at Deep Sea Drilling Project Sites 458 and 459 indicate that there were two stages of alteration at each site: an early oxidative, probably hydrothermal, stage and a later, low-temperature, less oxidative stage, probably contemporaneous with faulting in the tectonically active Mariana forearc region. The initial stage is most evident in Hole 459B, where low-Al, high Fe smectites and iron hydroxides formed in vesicles in pillow basalts and low-Al palygorskite formed in fractures. Iron hydroxides and celadonite formed in massive basalts next to quartz-oligoclase micrographic intergrowths. Palygorskite was found in only one sample near the top of basement in Hole 458, but it too is associated with iron hydroxides. Palygorskite has previously been reported only in marine sediments in DSDP and other occurrences. It evidently formed here as a precipitate from fluids in which Si, Mg, Fe, and even some Al were concentrated. Experimental data suggest that the solutions probably had high pH and somewhat elevated temperatures. The compositions of associated smectites resemble those in hydrothermal sediments and in basalts at the Galapagos mounds geothermal field. The second stage of alteration was large-scale replacement of basalt by dioctahedral, trioctahedral, or mixed-layer clays and phillipsite along zones of intense fracturing, especially near the bottom of Holes 458 and 459B. The basalts are commonly slickensided, and there are recemented microfault offsets in overlying sediments. Native copper occurs in one core of Hole 458, but associated smectites are dominantly dioctahedral, unlike Hole 459B, where they are mainly trioctahedral, indicating nonoxidative alteration. The alteration in both holes is more intense than at most DSDP ocean crust sites and may have been augmented by water derived from subducting ocean crust beneath the fore-arc region.
Resumo:
The ~46-m.y.-old igneous basement cored during Leg 200 in the North Pacific represents one of the few cross sections of Pacific oceanic crust with a total penetration into basalt of >100 m. The rocks, emplaced during the Eocene at a fast-spreading rate (~14 cm/yr; full rate) are strongly differentiated tholeiitic basalts (ferrobasalts) with 7-4.5 wt% MgO, relatively high TiO2 (2-3.5 wt%), and total iron as Fe2O3 (9.1-16.8 wt%). The differentiated character of these lavas is related to unusually large amounts of crystallization differentiation of plagioclase, clinopyroxene, and olivine. The lithostratigraphy of the basement (cored to ~170 meters below seafloor) is divided into three units. The deepest unit (lithologic Unit 3), is a succession of lava flows of no more that a few meters thickness each. The intermediate unit (lithologic Unit 2) is represented by intermixed thin flows and pillows, whereas the shallowest unit (lithologic Unit 1), comprises two massive flows. The rocks range from aphyric to sparsely clinopyroxene-plagioclase-phyric (phenocryst content = <3 vol%) and from holocrystalline to hypohyaline. Chilled margins of pillow fragments show holohyaline to sparsely vitrophyric textures. Site 1224 oxide minerals present a type of alteration not previously seen, where titanomagnetite is only partially destroyed and the pure magnetite component is partially removed from the mineral, leaving, in the most extreme case, a nearly pure ulvöspinel residuum. As a result of this dissolution, iron, mainly in the oxidized state, is added to the circulating solvent fluids. This means that a considerable metal source can result from low-temperature reactions throughout the upper ocean crust. The coarsest-grained lithologic Unit 1 rocks have interstitial myrmekitic intergrowths of quartz and sodic plagioclase (~An12), roughly similar in mineralogy and bulk composition to tonalite/trondhjemite veinlets in abyssal gabbros from the southwest Indian Ocean and Hess Deep, eastern equatorial Pacific. Based on idiomorphic relationships and projections into the simplified Q-Ab-Or-H2O granite ternary system, the myrmekitic intergrowths formed at the same time as, or just after, the oxide minerals coprecipitated and at low water vapor pressure (~0.5 kbar). Their compositions correspond to SiO2-oligoclase intergrowths that are considerably less potassic than dacitic glasses that erupt, although rarely, along the East Pacific Rise or that have been produced experimentally by partial melting of gabbro. Based on the crystallization history and comparison to experimental data, the original interstitial siliceous liquids resulted from late-stage immiscible separation of siliceous and iron-rich liquids. The rare andesitic lavas found along the East Pacific Rise may be hybrid rocks formed by mixing of these immiscible siliceous melts with basaltic magma.