4 resultados para inter-group contact
em Publishing Network for Geoscientific
Resumo:
Sites 482, 483, and 485 were drilled during Leg 65 on young oceanic crust south of the Tamayo Transform Fault. The Leg 65 drilling program was part of a multinational effort to study the East Pacific Rise (EPR) and complements sea bottom surveys conducted both in this area (Lewis, 1979; Cyamex Scientific Team and Pastouret, 1981) and farther south at 21 °N (Larson, 1971; Normark, 1976; Cyamex Scientific Team; Rise Project Group, 1980). These studies, which included deep-tow, Angus and submersible surveys, were recently complemented by sea-beam surveys conducted by the Jean Charcot on the Tamayo Fracture Zone and farther south along the EPR. They have led to a better understanding of the magmatic, tectonic, and sedimentary processes occurring on the East Pacific Rise between the Tamayo and Rivera fracture zones. The purpose of this chapter is to describe the metamorphic processes affecting Pliocene through Quaternary sediments found in contact, or inter layered, with basaltic units drilled during Leg 65 at the mouth of the Gulf of California.
Resumo:
The overarching goal of the Yamal portion of the Greening of the Arctic project is to examine how the terrain and anthropogenic factors of reindeer herding and resource development combined with the climate variations on the Yamal Peninsula affect the spatial and temporal patterns of vegetation change and how these changes are in turn affecting traditional herding of the indigenous people of the region. The purpose of the expeditions was to collect groundobservations in support of remote sensing studies at four locations along a transect that traverses all the major bioclimate subzones of the Yamal Peninsula. This data report is a summary of information collected during the 2007 and 2008 expeditions. It includes all the information from the 2008 data report (Walker et al. 2008) plus new information collected at Kharasavey in Aug 2008. The locations included in this report are Nadym (northern taiga subzone), Laborovaya (southern tundra = subzone E of the Circumpolar Arctic Vegetation Map (CAVM), Vaskiny Dachi (southern typical tundra = subzone D), and Kharasavey (northern typical tundra = subzone C). Another expedition is planned for summer 2009 to the northernmost site at Belyy Ostrov (Arctic tundra = subzone B). Data are reported from 10 study sites - 2 at Nadym, 2 at Laborovaya, and 3 at Vaskiny Dachi and 3 at Kharasavey. The sites are representative of the zonal soils and vegetation, but also include variation related to substrate (clayey vs. sandy soils). Most of the information was collected along 5 transects at each sample site, 5 permanent vegetation study plots, and 1-2 soil pits at each site. The expedition also established soil and permafrost monitoring sites at each location. This data report includes: (1) background for the project, (2) general descriptions and photographs of each locality and sample site, (3) maps of the sites, study plots, and transects at each location, (4) summary of sampling methods used, (5) tabular summaries of the vegetation data (species lists, estimates of cover abundance for each species within vegetation plots, measured percent ground cover of species along transects, site factors for each study plot), (6) summaries of the Normalized Difference Vegetation Index (NDVI) and leaf area index (LAI) along each transect, (7) soil descriptions and photos of the soil pits at each study site, (8) summaries of thaw measurements along each transect, and (9) contact information for each of the participants. One of the primary objectives was to provide the Russian partners with full documentation of the methods so that Russian observers in future years could repeat the observations independently.
Resumo:
The first appearance of skeletal metazoans in the late Ediacaran (~550 million years ago; Ma) has been linked to the widespread development of oxygenated oceanic conditions, but a precise spatial and temporal reconstruction of their evolution has not been resolved. Here we consider the evolution of ocean chemistry from ~550 to ~541 Ma across shelf-to-basin transects in the Zaris and Witputs Sub-Basins of the Nama Group, Namibia. New carbon isotope data capture the final stages of the Shuram/Wonoka deep negative C-isotope excursion, and these are complemented with a reconstruction of water column redox dynamics utilising Fe-S-C systematics and the distribution of skeletal and soft-bodied metazoans. Combined, these inter-basinal datasets provide insight into the potential role of ocean redox chemistry during this pivotal interval of major biological innovation. The strongly negative d13C values in the lower parts of the sections reflect both a secular, global change in the C-isotopic composition of Ediacaran seawater, as well as the influence of 'local' basinal effects as shown by the most negative d13C values occurring in the transition from distal to proximal ramp settings. Critical, though, is that the transition to positive d13C values postdates the appearance of calcified metazoans, indicating that the onset of biomineralization did not occur under post-excursion conditions. Significantly, we find that anoxic and ferruginous deeper water column conditions were prevalent during and after the transition to positive d13C that marks the end of the Shuram/Wonoka excursion. Thus, if the C isotope trend reflects the transition to global-scale oxygenation in the aftermath of the oxidation of a large-scale, isotopically light organic carbon pool, it was not sufficient to fully oxygenate the deep ocean. Both sub-basins reveal highly dynamic redox structures, where shallow, inner ramp settings experienced transient oxygenation. Anoxic conditions were caused either by episodic upwelling of deeper anoxic waters or higher rates of productivity. These settings supported short-lived and monospecific skeletal metazoan communities. By contrast, microbial (thrombolite) reefs, found in deeper inner- and mid-ramp settings, supported more biodiverse communities with complex ecologies and large skeletal metazoans. These long-lived reef communities, as well as Ediacaran soft-bodied biotas, are found particularly within transgressive systems, where oxygenation was persistent. We suggest that a mid-ramp position enabled physical ventilation mechanisms for shallow water column oxygenation to operate during flooding and transgressive sea-level rise. Our data support a prominent role for oxygen, and for stable oxygenated conditions in particular, in controlling both the distribution and ecology of Ediacaran skeletal metazoan communities.
Resumo:
The gross changes in concentrations of several trace elements in seawater after contact with ferro-manganese particle suspensions has been determined. Cobalt, Fe, and Zn concentrations in the seawater were greatly increased after contact with the par¬ticles. The concentrations of Rb, U, Cs, Sb, and Ag were altered to a lesser degree by this treatment. Similar results were observed where seawater was con¬tacted with suspensions of pelagic sediments. Of the trace elements measured, cobalt and iron appear to be the best elemental indicators of the presence of manganese mining effluents in the ocean. The addi¬tions of the essential elements Co, Fe and Zn toge¬ther with nutrients from the bottom waters may pro¬duce increased biological productivity. However, the toxic trace metals, such as Hg, Cu and Cd which could enter ocean water from the nodules and sedi¬ment and which may be high in effluent-affected areas should be investigated before conclusions as to the likely impact can be reached. Trace element analysis of seawater samples collected at a Pacific Ocean manganese nodule dredging site showed high t race element concentrations, but these are believed to have resulted from contamination during sample collection or storage rather than from the dredging operations.