2 resultados para independent evolution
em Publishing Network for Geoscientific
Resumo:
One hypothesis for the success of invasive species is reduced pathogen burden, resulting from a release from infections or high immunological fitness (low immunopathology) of invaders. Despite of strong selection exerted on the host, the evolutionary response of invaders to newly acquired pathogens has rarely been considered. The two independent and genetically distinct invasions of the Pacific oyster Crassostrea gigas into the North Sea represent an ideal model system to study fast evolutionary responses of invasive populations. By exposing both invasion sources to ubiquitous and phylogenetically diverse pathogens (Vibrio spp.) we demonstrate that within a few generations hosts adapted to sympatric pathogen communities. However, this local adaptation only became apparent in selective environments, i.e. at elevated temperatures reflecting patterns of disease outbreaks in natural populations. Resistance against sympatric and allopatric Vibrio spp. strains was dominantly inherited in crosses between both invasion sources, resulting in an overall higher resistance of admixed individuals than pure lines. Therefore we suggest that a simple genetic resistance mechanism of the host is matched to a common virulence mechanism shared by local Vibrio strains. This combination might have facilitated a fast evolutionary response that can explain another dimension of why invasive species can be so successful in newly invaded ranges.
Resumo:
Regional/global-scale information on coastline rates of change and trends is extremely valuable, but national-scale studies are scarce. A widely accepted standardized methodology for analysing long-term coastline change has been difficult to achieve, but is essential to conduct an integrated and holistic approach to coastline evolution and hence support coastal management actions. Additionally, databases providing knowledge on coastline evolution are of key importance to support both coastal management experts and users. The main objective of this work is to present the first systematic, global and consistent long-term coastline evolution data of Portuguese mainland low-lying sandy. The methodology used quantifies coastline evolution using an unique and robust coastline indicator (the foredune toe), which is independent of short-term changes. The dataset presented comprises: 1) two polyline sets, mapping the 1958 and 2010 sandy beach-dune systems coastline, both optimized for working at 1:50 000 scale or smaller, and 2) one polyline set representing long-term change rates between 1958 and 2010, estimated at each 250 m. Results show beach erosion as the dominant trend, with a mean change rate of -0.24 ± 0.01 m/year for all mainland Portuguese beach-dune systems. Although erosion is dominant, this evolution is variable in signal and magnitude in different coastal sediment cell and also within each cell. The most relevant beach erosion issues were found in the coastal stretches of Espinho - Torreira and Costa Nova - Praia da Mira, both at sub-cell 1b; Cova Gala - Leirosa, at sub-cell 1c and Cova do Vapor - Costa da Caparica, at cell 4. Cells 1 and 4 exhibit a history of major human interventions interfering with the coastal system, many of which originated and maintained a sediment deficit. In contrast, cells 5 and 6 have been less intervened and show stable or moderate accretion behaviour.