11 resultados para in-domain data requirement
em Publishing Network for Geoscientific
Resumo:
A compiled set of in situ data is important to evaluate the quality of ocean-colour satellite-data records. Here we describe the data compiled for the validation of the ocean-colour products from the ESA Ocean Colour Climate Change Initiative (OC-CCI). The data were acquired from several sources (MOBY, BOUSSOLE, AERONET-OC, SeaBASS, NOMAD, MERMAID, AMT, ICES, HOT, GeP&CO), span between 1997 and 2012, and have a global distribution. Observations of the following variables were compiled: spectral remote-sensing reflectances, concentrations of chlorophyll a, spectral inherent optical properties and spectral diffuse attenuation coefficients. The data were from multi-project archives acquired via the open internet services or from individual projects, acquired directly from data providers. Methodologies were implemented for homogenisation, quality control and merging of all data. No changes were made to the original data, other than averaging of observations that were close in time and space, elimination of some points after quality control and conversion to a standard format. The final result is a merged table designed for validation of satellite-derived ocean-colour products and available in text format. Metadata of each in situ measurement (original source, cruise or experiment, principal investigator) were preserved throughout the work and made available in the final table. Using all the data in a validation exercise increases the number of matchups and enhances the representativeness of different marine regimes. By making available the metadata, it is also possible to analyse each set of data separately.
Resumo:
This data set contains a time series of plant height measurements (vegetative and reproductive) from the main experiment plots of a large grassland biodiversity experiment (the Jena Experiment; see further details below). In addition, data on species specific plant heights for the main experiment are available from 2002. In the main experiment, 82 grassland plots of 20 x 20 m were established from a pool of 60 species belonging to four functional groups (grasses, legumes, tall and small herbs). In May 2002, varying numbers of plant species from this species pool were sown into the plots to create a gradient of plant species richness (1, 2, 4, 8, 16 and 60 species) and functional richness (1, 2, 3, 4 functional groups). Plots were maintained by bi-annual weeding and mowing. 1. Plant height was recorded, generally, twice a year just before biomass harvest (during peak standing biomass in late May and in late August). Methodologies of measuring height have varied somewhat over the years. In earlier year the streched plant height was measured, while in later years the standing height without streching the plant was measured. Vegetative height was measured either as the height of the highest leaf or as the length of the main axis of non-flowering plants. Regenerating height was measured either as the height of the highest flower on a plant or as the height of the main axis of flowering. Sampled plants were either randomly selected in the core area of plots or along transects in defined distances. For details refer to the description of individual years. Starting in 2006, also the plots of the management experiment, that altered mowing frequency and fertilized subplots (see further details in the general description of the Jena Experiment) were sampled. 2. Species specific plant height was recorded two times in 2002: in late July (vegetative height) and just before biomass harvest during peak standing biomass in late August (vegetative and regenerative height). For each plot and each sown species in the species pool, 3 plant individuals (if present) from the central area of the plots were randomly selected and used to measure vegetative height (non-flowering indviduals) and regenerative height (flowering individuals) as stretched height. Provided are the means over the three measuremnts per plant species per plot.
Resumo:
This data set contains three time series of measurements of soil carbon (particular and dissolved) from the main experiment plots of a large grassland biodiversity experiment (the Jena Experiment; see further details below). In the main experiment, 82 grassland plots of 20 x 20 m were established from a pool of 60 species belonging to four functional groups (grasses, legumes, tall and small herbs). In May 2002, varying numbers of plant species from this species pool were sown into the plots to create a gradient of plant species richness (1, 2, 4, 8, 16 and 60 species) and functional richness (1, 2, 3, 4 functional groups). Plots were maintained by bi-annual weeding and mowing. 1. Particulate soil carbon: Stratified soil sampling was performed every two years since before sowing in April 2002 and was repeated in April 2004, 2006 and 2008 to a depth of 30 cm segmented to a depth resolution of 5 cm giving six depth subsamples per core. Total carbon concentration was analyzed on ball-milled subsamples by an elemental analyzer at 1150°C. Inorganic carbon concentration was measured by elemental analysis at 1150°C after removal of organic carbon for 16 h at 450°C in a muffle furnace. Organic carbon concentration was calculated as the difference between both measurements of total and inorganic carbon. 2. Particulate soil carbon (high intensity sampling): In one block of the Jena Experiment soil samples were taken to a depth of 1 m (segmented to a depth resolution of 5 cm giving 20 depth subsamples per core) with three replicates per block ever 5 years starting before sowing in April 2002. Samples were processed as for the more frequent sampling. 3. Dissolved organic carbon: Suction plates installed on the field site in 10, 20, 30 and 60 cm depth were used to sample soil pore water. Cumulative soil solution was sampled biweekly and analyzed for dissolved organic carbon concentration by a high TOC elemental analyzer. Annual mean values of DOC are provided.
Resumo:
This data set contains two time series of measurements of dissolved phosphorus (organic, inorganic and total with a biweekly resolution) and dissolved inorganic phosphorus with a seasonal resolution. In addition, data on phosphorus from soil samples measured in 2007 and fractionated by different acid-extrations (Hedley fractions) are provided. All data measured at the main experiment plots of a large grassland biodiversity experiment (the Jena Experiment; see further details below). In the main experiment, 82 grassland plots of 20 x 20 m were established from a pool of 60 species belonging to four functional groups (grasses, legumes, tall and small herbs). In May 2002, varying numbers of plant species from this species pool were sown into the plots to create a gradient of plant species richness (1, 2, 4, 8, 16 and 60 species) and functional richness (1, 2, 3, 4 functional groups). Plots were maintained by bi-annual weeding and mowing. 1. Dissolved phosphorus in soil solution: Suction plates installed on the field site in 10, 20, 30 and 60 cm depth were used to sample soil pore water. Cumulatively extracted soil solution was collected every two weeks from October 2002 to May 2006. The biweekly samples from 2002, 2003 and 2004 were analyzed for dissolved organic phosphorus (DOP), dissolved inorganic phosphorus (PO4P) and dissolved total phosphorus (TDP) by Continuous Flow Analyzer (CFA SAN ++, SKALAR [Breda, The Netherlands]). 2. Seasonal values of dissolved inorganic phosphorus in soil solution were calculated as volume-weighted mean values of the biweekly measurements (spring = March to May, summer = June to August, fall = September to November, winter = December to February). 3. Phosphorus fractions in soil: Five independent soil samples per plot were taken in a depth of 0-15 cm using a soil corer with an inner diameter of 1 cm. The five samples per plot were combined to one composite sample per plot. A four-step sequential P fractionation (Hedley fractions) was applied and concentrations of P fractions in soil were measured photometrically (molybdenum blue-reactive P) with a Continuous Flow Analyzer (Bran&Luebbe, Germany).
Resumo:
This data set contains four time series of particulate and dissolved soil nitrogen measurements from the main experiment plots of a large grassland biodiversity experiment (the Jena Experiment; see further details below). In the main experiment, 82 grassland plots of 20 x 20 m were established from a pool of 60 species belonging to four functional groups (grasses, legumes, tall and small herbs). In May 2002, varying numbers of plant species from this species pool were sown into the plots to create a gradient of plant species richness (1, 2, 4, 8, 16 and 60 species) and functional richness (1, 2, 3, 4 functional groups). Plots were maintained by bi-annual weeding and mowing. 1. Total nitrogen from solid phase: Stratified soil sampling was performed every two years since before sowing in April 2002 and was repeated in April 2004, 2006 and 2008 to a depth of 30 cm segmented to a depth resolution of 5 cm giving six depth subsamples per core. In 2002 five samples per plot were taken and analyzed independently. Averaged values per depth layer are reported. In later years, three samples per plot were taken, pooled in the field, and measured as a combined sample. Sampling locations were less than 30 cm apart from sampling locations in other years. All soil samples were passed through a sieve with a mesh size of 2 mm in 2002. In later years samples were further sieved to 1 mm. No additional mineral particles were removed by this procedure. Total nitrogen concentration was analyzed on ball-milled subsamples (time 4 min, frequency 30 s-1) by an elemental analyzer at 1150°C (Elementaranalysator vario Max CN; Elementar Analysensysteme GmbH, Hanau, Germany). 2. Total nitrogen from solid phase (high intensity sampling): In block 2 of the Jena Experiment, soil samples were taken to a depth of 1m (segmented to a depth resolution of 5 cm giving 20 depth subsamples per core) with three replicates per block ever 5 years starting before sowing in April 2002. Samples were processed as for the more frequent sampling but were always analyzed independently and never pooled. 3. Mineral nitrogen from KCl extractions: Five soil cores (diameter 0.01 m) were taken at a depth of 0 to 0.15 m (and between 2002 and 2004 also at a depth of 0.15 to 0.3 m) of the mineral soil from each of the experimental plots at various times over the years. In addition also plots of the management experiment, that altered mowing frequency and fertilized subplots (see further details below) were sampled in some later years. Samples of the soil cores per plot (subplots in case of the management experiment) were pooled during each sampling campaign. NO3-N and NH4-N concentrations were determined by extraction of soil samples with 1 M KCl solution and were measured in the soil extract with a Continuous Flow Analyzer (CFA, 2003-2005: Skalar, Breda, Netherlands; 2006-2007: AutoAnalyzer, Seal, Burgess Hill, United Kingdom). 4. Dissolved nitrogen in soil solution: Glass suction plates with a diameter of 12 cm, 1 cm thickness and a pore size of 1-1.6 µm (UMS GmbH, Munich, Germany) were installed in April 2002 in depths of 10, 20, 30 and 60 cm to collect soil solution. The sampling bottles were continuously evacuated to a negative pressure between 50 and 350 mbar, such that the suction pressure was about 50 mbar above the actual soil water tension. Thus, only the soil leachate was collected. Cumulative soil solution was sampled biweekly and analyzed for nitrate (NO3-), ammonium (NH4+) and total dissolved nitrogen concentrations with a continuous flow analyzer (CFA, Skalar, Breda, The Netherlands). Nitrate was analyzed photometrically after reduction to NO2- and reaction with sulfanilamide and naphthylethylenediamine-dihydrochloride to an azo-dye. Our NO3- concentrations contained an unknown contribution of NO2- that is expected to be small. Simultaneously to the NO3- analysis, NH4+ was determined photometrically as 5-aminosalicylate after a modified Berthelot reaction. The detection limits of NO3- and NH4+ were 0.02 and 0.03 mg N L-1, respectively. Total dissolved N in soil solution was analyzed by oxidation with K2S2O8 followed by reduction to NO2- as described above for NO3-. Dissolved organic N (DON) concentrations in soil solution were calculated as the difference between TDN and the sum of mineral N (NO3- + NH4+).
Resumo:
We studied the relationship between flower size and nectar properties of hummingbird-visited flowers in the Brazilian Atlantic Forest. We analysed the nectar volume and concentration as a function of corolla length and the average bill size of visitors for 150 plant species, using the phylogenetic generalized least squares (PGLS) to control for phylogenetic signals in the data. We found that nectar volume is positively correlated with corolla length due to phylogenetic allometry. We also demonstrated that larger flowers provide better rewards for long-billed hummingbirds. Regardless of the causal mechanisms, our results support the hypothesis that morphological floral traits that drive partitioning among hummingbirds correspond to the quantity of resources produced by the flowers in the Atlantic Forest. We demonstrate that the relationship between nectar properties and flower size is affected by phylogenetic constraints and thus future studies assessing the interaction between floral traits need to control for phylogenetic signals in the data.
Resumo:
The response of phytoplankton assemblages to hydrographical forcing across the southern Brazilian shelf was studied based on data collected during wintertime (June/2012), complemented with MODIS-Aqua satellite imagery. The in situ data set was comprised by water column structure properties (derived from CTD casts), dissolved inorganic nutrients (ammonium, nitrite, nitrate, phosphate and silicate) and phytoplankton biomass [chlorophyll a (Chl a) concentration] and composition. Phytoplankton assemblages were assessed by both microscopy and HPLC-CHEMTAX approaches. A canonical correspondence analysis associating physical, chemical and phytoplankton composition data at surface evinced a tight coupling between the phytoplankton community and hydrographic conditions, with remarkable environmental gradients across three different domains: the pelagic, outer shelf Tropical Water (TW); the mid shelf domain under influence of Subtropical Shelf Water (STSW); and the inner shelf domain mainly under influence of riverine outflow of the Plata River Plume Water (PPW). Results showed that intrusion of low salinity and nutrient-rich PPW stimulated the phytoplankton growth and diversity within the inner shelf region, with enhanced Chl a levels (>1.3 mg/m**3) and a great abundance of diatoms, ciliates, dinoflagellates, raphidophyceans and cryptophytes. Conversely, other diatoms (e.g. Rhizosolenia clevei), tiny species of prochlorophytes and cyanobacteria and a noticeable contribution of dinoflagellates and other flagellates associated with lower Chl a levels (<0.93 mg/m**3), characterized the TW domain, where low nutrient concentrations and deep upper mixed layer were found. The transitional mid shelf domain showed intermediate levels of both nutrients and Chl a (ranging 1.06-1.59 mg/m**3), and phytoplankton was mainly composed by dinoflagellates, such as Dinophysis spp., and gymnodinioids. Results have shown considerable phytoplankton diversity in winter at that section of the southwestern Atlantic Ocean.
Resumo:
The success of any efforts to determine the effects of climate change on marine ecosystems depends on understanding in the first instance the natural variations, which contemporarily occur on the interannual and shorter time scales. Here we present results on the environmental controls of zooplankton distribution patterns and behaviour in the eastern Weddell Sea, Southern Ocean. Zooplankton abundance and vertical migration are derived from the mean volume backscattering strength (MVBS) and the vertical velocity measured by moored acoustic Doppler current profilers (ADCPs), which were deployed simultaneously at 64°S, 66.5°S and 69°S along the Greenwich Meridian from February, 2005, until March, 2008. While these time series span a period of full three years they resolve hourly changes. A highly persistent behavioural pattern found at all three mooring locations is the synchronous diel vertical migration (DVM) of two distinct groups of zooplankton that migrate between a deep residence depth during daytime and a shallow depth during nighttime. The DVM was closely coupled to the astronomical daylight cycles. However, while the DVM was symmetric around local noon, the annual modulation of the DVM was clearly asymmetric around winter solstice or summer solstice, respectively, at all three mooring sites. DVM at our observation sites persisted throughout winter, even at the highest latitude exposed to the polar night. Since the magnitude as well as the relative rate of change of illumination is minimal at this time, we propose that the ultimate causes of DVM separated from the light-mediated proximal cue that coordinates it. In all three years, a marked change in the migration behaviour occurred in late spring (late October/early November), when DVM ceased. The complete suspension of DVM after early November is possibly caused by the combination of two factors: (1) increased availability of food in the surface mixed layer provided by the phytoplankton spring bloom, and (2) vanishing diurnal enhancement of the threat from visually oriented predators when the illumination is quasi-continuous during the polar and subpolar summer. Zooplankton abundance in the water column, estimated as the mean MVBS in the depth range 50-300 m, was highest end of summer and lowest mid to end winter on the average annual cycle. However, zooplankton abundance varied several-fold between years and between locations. Based on satellite and in situ data of chlorophyll and sea ice as well as on hydrographic measurements, the interannual and spatial variations of zooplankton mean abundance can be explained by differences in the magnitude of the phytoplankton spring bloom, which develops during the seasonal sea ice retreat. Whereas the vernal ice melt appears necessary to stimulate the blooming of phytoplankton, it is not the determinator of the blooms magnitude, its areal extent and duration. A possible explanation for the limitation of the phytoplankton bloom in some years is top-down control. We hypothesise that the phytoplankton spring development can be curbed by grazing when the zooplankton had attained high abundance by growth during the preceding summer.
Resumo:
We provide a compilation of downward fluxes (total mass, POC, PON, BSiO2, CaCO3, PIC and lithogenic/terrigenous fluxes) from over 6000 sediment trap measurements distributed in the Atlantic Ocean, from 30 degree North to 49 degree South, and covering the period 1982-2011. Data from the Mediterranean Sea are also included. Data were compiled from different sources: data repositories (BCO-DMO, PANGAEA), time series sites (BATS, CARIACO), published scientific papers and/or personal communications from PI's. All sources are specifed in the data set. Data from the World Ocean Atlas 2009 were extracted to provide each flux observation with contextual environmental data, such as temperature, salinity, oxygen (concentration, AOU and percentage saturation), nitrate, phosphate and silicate.