5 resultados para imagej
em Publishing Network for Geoscientific
Resumo:
This data was collected during a cruise across Drake Passage in the Southern Ocean in February 2009. This data consists of coccolithophore abundance, calcification and primary production rates, carbonate chemistry parameters and ancillary data of macronutrients, chlorophyll-a, average mixed layer irradiance, daily irradiance above the sea surface, euphotic and mixed layer depth, temperature and salinity.
Resumo:
A large fraction of the carbon dioxide added to the atmosphere by human activity enters the sea, causing ocean acidification. We show that otoliths (aragonite ear bones) of young fish grown under high CO2 (low pH) conditions are larger than normal, contrary to expectation. We hypothesize that CO2 moves freely through the epithelium around the otoliths in young fish, accelerating otolith growth while the local pH is controlled. This is the converse of the effect commonly reported for structural biominerals.
Resumo:
Ocean acidification, as a result of increased atmospheric CO2, has the potential to adversely affect the larval stages of many marine organisms and hence have profound effects on marine ecosystems. This is the first study of its kind to investigate the effects of ocean acidification on the early life-history stages of three echinoderms species, two asteroids and one irregular echinoid. Potential latitudinal variations on the effects of ocean acidification were also investigated by selecting a polar species (Odontaster validus), a temperate species (Patiriella regularis), and a tropical species (Arachnoides placenta). The effects of reduced seawater pH levels on the fertilization of gametes, larval survival and morphometrics on the aforementioned species were evaluated under experimental conditions. The pH levels considered for this research include ambient seawater (pH 8.1 or pH 8.2), levels predicted for 2100 (pH 7.7 and pH 7.6) and the extreme pH of 7.0, adjusted by bubbling CO2 gas into filtered seawater. Fertilization for Odontaster validus and Patiriella regularis for the predicted scenarios for 2100 was robust, whereas fertilization was significantly reduced in Arachnoides placenta. Larval survival was robust for the three species at pH 7.8, but numbers declined when pH dropped below 7.6. Normal A. placenta larvae developed in pH 7.8, whereas smaller larvae were observed for O. validus and P. regularis under the same pH treatment. Seawater pH levels below 7.6 resulted in smaller and underdeveloped larvae for all three species. The greatest effects were expected for the Antarctic asteroid O. validus but overall the tropical sand dollar A. placenta was the most affected by the reduction in seawater pH. The effects of ocean acidification on the asteroids O. validus and P. regulars, and the sand dollar A. placenta are species-specific. Several parameters, such as taxonomic differences, physiology, genetic makeup and the population's evolutionary history may have contributed to this variability. This study highlights the vulnerability of the early developmental stages and the complexity of ocean acidification. However, future research is needed to understand the effects at individual, community and ecosystem levels.