366 resultados para hydrothermal deposition

em Publishing Network for Geoscientific


Relevância:

60.00% 60.00%

Publicador:

Resumo:

The sediments recovered on Deep Sea Drilling Project Leg 54 appear to be mixtures of the normal pelagic sediments of the area and hydrothermally produced manganese and iron phases. The latter are mineralogically and chemically very similar to phases recovered from surficial sampling of the mounds. The hydrothermal nontronite which is approximately 15 meters thick in the three holes is essentially free of carbonate or detrital contaminants. The basal sediments are similar to the carbonate oozes presently being deposited in the region, but are enriched in Mn and Fe. This enrichment appears to be the result of hydrothermal deposition that took place at or near the spreading center and may not be associated with the mounds formation. Three different hypotheses for the formation of the nontronite layer and the mounds deposits are considered. An initial deposition of a widespread nontronite layer and subsequent diapiric-like movement of the layer into carbonates could account for the observed stratigraphy; however, if this be correct, analogous deposits should be present in other DSDP sites. The second hypothesis - replacement of the normal sediments by nontronite - may be feasible, but the high purity of the nontronite requires dissolution and removal of refractory elements. The third hypothesis, metal deposition in an advancing oxidation gradient, is compatible with submersible observations of the mounds; however, it can account only for the high purity of the nontronite by very rapid deposition of the hydrothermal phases.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A geochemical investigation has been conducted of a suite of four sediment cores collected from directly beneath the hydrothermal plume at distances of 2 to 25 km from the Rainbow hydrothermal field. As well as a large biogenic component (>80% CaCO3) these sediments record clear enrichments of the elements Fe, Cu, Mn, V, P, and As from hydrothermal plume fallout but only minor detrital background material. Systematic variations in the abundances of "hydrothermal" elements are observed at increasing distance from the vent site, consistent with chemical evolution of the dispersing plume. Further, pronounced Ni and Cr enrichments at specific levels within each of the two cores collected from closest to the vent site are indicative of discrete episodes of additional input of ultrabasic material at these two near-field locations. Radiocarbon dating reveals mean Holocene accumulation rates for all four cores of 2.7 to 3.7 cm.kyr?1, with surface mixed layers 7 to 10+ cm thick, from which a history of deposition from the Rainbow hydrothermal plume can be deduced. Deposition from the plume supplies elements to the underlying sediments that are either directly hydrothermally sourced (e.g., Fe, Mn, Cu) or scavenged from seawater via the hydrothermal plume (e.g., V, P, As). Holocene fluxes into to the cores' surface mixed layers are presented which, typically, are an order of magnitude greater than "background" authigenic fluxes from the open North Atlantic. One core, collected closest to the vent site, indicates that both the concentration and flux of hydrothermally derived material increased significantly at some point between 8 and 12 14C kyr ago; the preferred explanation is that this variation reflects the initiation/intensification of hydrothermal venting at the Rainbow hydrothermal field at this time - perhaps linked to some specific tectonic event in this fault-controlled hydrothermal setting.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The monograph summarizes results of studies of hydrothermal fields on the ocean floor, hydrothermal plumes and metalliferous sediments. Hydrothermal ore manifestations formed in different geodynamic settings, with different character of volcanism in different facial conditions of deposition are described. Causes of non-uniformity of hydrothermal system functioning in different parts of the ocean and therefore variability of hydrothermal deposits are under consideration. On the base of found relationships of these irregularities with geodynamics, volcanism and sedimentation a new classification of hydrothermal processes and genetic models of hydrothermal ore formation in the ocean have been created. Regularities of hydrothermal sedimentary material dispersion in bottom waters are discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A large diameter piston core containing 8.35 m of metalliferous sediment has been recovered from a small abyssal valley in the remote Southwest Pacific Basin (31°42.194'S, 143°30.331'W; 5082 m water depth), providing unique insight into hydrothermal activity and eolian sedimentation there since the early Oligocene. A combination of fish-teeth Sr-isotope stratigraphy and INAA geochemical data reveals an exponentially decreasing hydrothermal flux 31 Ma to the present. Although hydrothermal sedimentation related to seafloor spreading explains this trend, a complex history of late Eocene/early Oligocene ridge jumps, propagating rifts and plate tectonic reorganization of South Pacific seafloor could have also played a role. A possible hiatus in deposition, as recorded by changes in core composition just below 2 m depth, is beyond the resolution of the fish teeth Sr isotope dating method employed here; however, the timing of this interval may be coincident with extinction of the Pacific-Farallon Ridge at ~20 Ma. A low flux eolian component accumulating at this site shows an increase relative to the hydrothermal component above 2 m depth, consistent with dust-generating continental sources far to the west (Australia/New Zealand). This is the first long-term paleoceanographic record obtained from within the South Pacific "bare zone" (Rea et al., 2006), an anomalous region where Pacific seafloor has largely escaped sediment accumulation since the Late Cretaceous.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The polar compound (NSO) fractions of seabed petroleums and sediment extracts from the Guaymas Basin hydrothermal system have been analyzed by gas chromatography and gas chromatography-mass spectrometry. The oils were collected from the interiors and exteriors of high temperature hydrothermal vents and represent hydrothermal pyrolysates that have migrated to the seafloor by hydrothermal fluid circulation. The downcore samples are representative of both thermally unaltered and thermally altered sediments. The survey has revealed the presence of oxygenated compounds correlated with samples exhibiting a high degree of thermal maturity. Several homologous series of related ketone isomers are enriched in the interiors of the hydrothermal vent samples or in hydrothermally-altered sequences of the downcore sediments (DSDP Holes 477 and 481A). The n-alkanones range in carbon number from C11 to C33 with a Cmax from 14 to 23, distributions that are similar to those of the n-alkanes. The alkan-2-ones are usually in highest concentrations, with lower amounts of 3-, 4-, 5-, 6-, 7- (and higher) alkanones, and they exhibit no carbon number preference (there is an odd carbon number preference of alkanones observed for downcore samples). The alkanones are enriched in the interiors of the hydrothermal vent spires or in downcore hydrothermally-altered sediments, indicating an origin at depth or in the hydrothermal fluids and not from an external biogenic deposition. Minor amounts of C13 and C18 isoprenoid ketones are also present. Simulation of the natural hydrothermal alternation process by laboratory hydrous pyrolysis techniques provided information regarding the mode of alkanone formation. Hydrous pyrolysis of n-C32H66 at 350°C for 72 h with water only or water with inorganic additives has been studied using a stainless steel reaction vessel. In each experiment oxygenated hydrocarbons, including alkanones, were formed from the n-alkane. The product distributions indicate a reaction pathway consisting of n-alkanes and a-olefins as primary cracking products with internal olefins and alkanones as secondary reaction products. Hydrous pyrolyses of Messel shale spiked with molecular probes have been performed under similar time and temperature constraints to produce alkanone distributions like those found in the hydrothermal vent petroleums.