21 resultados para hunter-gatherer-fisher
em Publishing Network for Geoscientific
Resumo:
Farming and herding were introduced to Europe from the Near East and Anatolia; there are, however, considerable arguments about the mechanisms of this transition. Were it the people who moved and either outplaced, or admixed with, the indigenous hunter-gatherer groups? Or was it material and information that moved---the Neolithic Package---consisting of domesticated plants and animals and the knowledge of their use? The latter process is commonly referred to as cultural diffusion and the former as demic diffusion. Despite continuous and partly combined efforts by archaeologists, anthropologists, linguists, palaeontologists and geneticists, a final resolution of the debate has not yet been reached. In the present contribution we interpret results from the Global Land Use and technological Evolution Simulator (GLUES). GLUES is a mathematical model for regional sociocultural development, embedded in the geoenvironmental context, during the Holocene. We demonstrate that the model is able to realistically hindcast the expansion speed and the inhomogeneous space-time evolution of the transition to agropastoralism in western Eurasia. In contrast to models that do not resolve endogenous sociocultural dynamics, our model describes and explains how and why the Neolithic advanced in stages. We uncouple the mechanisms of migration and information exchange and also of migration and the spread of agropastoralism. We find that: (1) An indigenous form of agropastoralism could well have arisen in certain Mediterranean landscapes, but not in Northern and Central Europe, where it depended on imported technology and material. (2) Both demic diffusion by migration and cultural diffusion by trade may explain the western European transition equally well. (3) Migrating farmers apparently contribute less than local adopters to the establishment of agropastoralism. Our study thus underlines the importance of adoption of introduced technologies and economies by resident foragers.
(Table 1a) Microprobe analyses of pyroxenites from the ophiolite complex in the Hunter Fracture Zone
(Table 1b) Microprobe analyses of websterites from the ophiolite complex in the Hunter Fracture Zone
Resumo:
A collection of dredge samples from the Hunter Fracture Zone includes holocrystalline massive and cumulose basic and ultrabasic rocks and volcanites of the ophiolite complex: from basalts to rhyolites. The ultrabasic rocks are largely serpentinized harzburgites and lherzolites; their relict mineralogy is typical of peridotite considered to be the refractory residue of partial melting of the mantle. Cumulate textured ultramafic rocks probably are related to the cumulate gabbro and granodiorite rather than to the residual mantle material. The gabbroic rocks are dominantly cumulate textured Pl-Opx-Cpx±Ol gabbronorite and Pl-Cpx±Ol gabbros; the mineral features of these rocks are the result of their crystallization at moderate pressure (in a moderate level magma chamber). The massive Pl-Cpx±Ol gabbros are less common. Green and brown-green Ca-amphibole has partially or totally replaced the clinopyroxene in many samples. There is an overlap in mineral chemistry between the cumulate rocks and the Opx-Cpx-Pl volcanic rocks and boninites. It is interpreted as an indication that the cumulate rocks were co-genetic with Opx-Cpx-Pl volcanic rocks and that they both constitute remnants of an island arc volcanic-plutonic series. The petrologic evidence indicates that ophiolite gabbroic rocks were derived from an island-arc rather than from a mid-ocean ridge.