3 resultados para human resources for health in low and middle income countries.
em Publishing Network for Geoscientific
Resumo:
During Ocean Drilling Program Leg 120, an almost complete Paleogene sediment section on the Kerguelen Plateau in the southern Indian Ocean was recovered. The biostratigraphy of radiolarians from these sediments at Sites 748 and 749 is studied. A biostratigraphic framework established in low and middle latitudes is not applicable because of the absence of most zonal marker species. Biogenic opal is present only in middle Eocene to Oligocene sediments, and three new zones-Lychnocanoma conica, Axoprunum (?) irregularis, and Eucyrtidium spinosum zones-are proposed. The Paleogene antarctic radiolarian fauna is different from that in low and middle latitudes. Three new species, Axoprunum (?) irregularis, Eucyrtidium cheni, and Eucyrtidium spinosum, are described.
Resumo:
In low and middle latitudes, the Cretaceous/Tertiary boundary is marked by a sudden and pronounced decrease in d13C values of near-surface-water carbonates and a reduction in the surface-to-bottom d13C gradient. These isotopic data have been interpreted as evidence of a decline in surface-water productivity that was responsible for the extinction of many planktic foraminiferal species and other marine organisms at or near the K/T boundary. We present planktic and benthic foraminiferal isotopic data from two almost biostratigraphically complete sections at Ocean Drilling Program Site 738 in the antarctic Indian Ocean and at Nye Kløv in Denmark. These data suggest that planktic carbonate d13C values in high latitudes may not have decreased dramatically at the K/T boundary; thus, surface-water productivity may not have been reduced as much as in low and middle latitudes. Comparison of the records of Site 738 with those of ODP Sites 690 and 750 indicates a pronounced decline in d13C values of planktic and benthic foraminifera and fine-fraction/bulk carbonate ~200 000 yr after the K/T boundary. This reflects a regional shift in the carbon isotopic composition of oceanic total dissolved carbon (TDC) and correlates with a similar change in benthic foraminiferal d13C values at mid- and low-latitude Deep Sea Drilling Project Sites 527 and 577. This oceanographic event was followed by the ecosystem's global recovery ~500 000 yr after the K/T boundary. These data suggest that the environmental effects of the K/T boundary may have been less severe in the high-latitude oceans than in tropical and subtropical regions.
Resumo:
Strong climatic and temperature fluctuations mark the Late Campanian and Maastrichtian as indicated by stable isotope records from the equatorial Pacific (Site 463) and middle and high latitude South Atlantic (Sites 525, 689 and 690). The first major global cooling decreased intermediate water temperatures (IWT) by 5-6°C between 73-70 Ma. At the same time, sea surface temperature (SST) decreased by 4-5°C in middle and high latitudes. Intermediate waters (IW) temporarily warmed by 2°C in low and middle latitudes between 70-68.5 Ma. Global cooling resumed between 68.5-65.5 Ma when IWT decreased by 3-4°C and SST by 5°C in middle latitudes. About 450 ka before the Cretaceous-Tertiary boundary rapid global warming increased IWT and SST by 3-4°C, though SST in the tropics changed little. During the last 200 ka of the Maastrichtian, climate cooled rapidly with IWT and SST decreasing by 2-3°C. During the global cooling at 71-70 Ma and possibly at 67-65.5 Ma, the sources of cold intermediate waters in the equatorial Pacific, Indo-Pacific and South Atlantic were derived from the high latitude North Pacific. In contrast, during the global climate warming between 65.2-65.4 Ma, the middle latitude South Atlantic was closest to the source of IW production and implies that the low latitude Tethys played a major role in global climate change. Climate changes, sea-level fluctuations and associated restricted seaways appear to be the most likely mechanisms for the alternating sources of IW production.