3 resultados para high harmonics generation

em Publishing Network for Geoscientific


Relevância:

30.00% 30.00%

Publicador:

Resumo:

We experimentally and numerically investigated the generation of plumes from a local heat source (LHS) and studied the interaction of these plumes with cellular convective motion (CCM) in a rectangular cavity filled with silicon oil at a Prandtl number (Pr) of approximately two thousand. The LHS is generated using a 0.2-W green laser beam. A roll-type CCM is generated by vertically heating one side of the cavity. The CCM may lead to the formation of an unusual spiral convective plume that resembles a vertical Archimedes spiral. A similar plume is obtained in a direct numerical simulation. We discuss the physical mechanism for the formation of a spiral plume and the application of the results to mantle convection problems. We also estimate the Reynolds (Re) and Rayleigh (Ra) numbers and apply self-similarity theory to convection in the Earth's mantle. Spiral plumes can be used to interpret mantle tomography results over the last decade.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Distributions of halogens (Cl, Br and I) in interstitial waters from sediments containing methane hydrate and in water of the hydrate itself are presented. High concentrations of halogens do not occur in interstitial waters from sediments that contain gas hydrates. The main reason for their low concentrations is the poverty of organic matter in sediments.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Next-generation sequencing (NGS) technologies have enabled us to determine phytoplankton community compositions at high resolution. However, few studies have adopted this approach to assess the responses of natural phytoplankton communities to environmental change. Here, we report the impact of different CO2 levels on spring diatoms in the Oyashio region of the western North Pacific as estimated by NGS of the diatom-specific rbcL gene (DNA), which encodes the large subunit of RubisCO. We also examined the abundance and composition of rbcL transcripts (cDNA) in diatoms to assess their physiological responses to changing CO2 levels. A short-term (3-day) incubation experiment was carried out on-deck using surface Oyashio waters under different pCO2 levels (180, 350, 750, and 1000 µatm) in May 2011. During the incubation, the transcript abundance of the diatom-specific rbcL gene decreased with an increase in seawater pCO2 levels. These results suggest that CO2 fixation capacity of diatoms decreased rapidly under elevated CO2 levels. In the high CO2 treatments (750 and 1000 µatm), diversity of diatom-specific rbcL gene and its transcripts decreased relative to the control treatment (350µatm), as well as contributions of Chaetocerataceae, Thalassiosiraceae, and Fragilariaceae to the total population, but the contributions of Bacillariaceae increased. In the low CO2 treatment, contributions of Bacillariaceae also increased together with other eukaryotes. These suggest that changes in CO2 levels can alter the community composition of spring diatoms in the Oyashio region. Overall, the NGS technology provided us a deeper understanding of the response of diatoms to changes in CO2 levels in terms of their community composition, diversity, and photosynthetic physiology.