5 resultados para heory of constraints
em Publishing Network for Geoscientific
Resumo:
New trace element, Sr-, Nd-, Pb- and Hf isotope data provide insights into the evolution of the Tonga-Lau Basin subduction system. The involvement of two separate mantle domains, namely Pacific MORB mantle in the pre-rift and early stages of back-arc basin formation, and Indian MORB mantle in the later stages, is confirmed by these results. Contrary to models proposed in recent studies on the basis of Pb isotope and other compositional data, this change in mantle wedge character best explains the shift in the isotopic composition, particularly 143Nd/144Nd ratios, of modern Tofua Arc magmas relative to all other arc products from this region. Nevertheless, significant changes in the slab-derived flux during the evolution of the arc system are also required to explain second order variations in magma chemistry. In this region, the slab-derived flux is dominated by fluid; however, these fluids carry Pb with sediment-influenced isotopic signatures, indicating that their source is not restricted to the subducting altered mafic oceanic crust. This has been the case from the earliest magmatic activity in the arc (Eocene) until the present time, with the exception of two periods of magmatic activity recorded in samples from the Lau Islands. Both the Lau Volcanic Group, and Korobasaga Volcanic Group lavas preserve trace element and isotope evidence for a contribution from subducted sediment that was not transported as a fluid, but possibly in the form of a melt. This component shares similarities with that influencing the chemistry of the northern Tofua Arc magmas, suggesting some caution may be required in the adoption of constraints for the latter dependent upon the involvement of sediments from the Louisville Ridge. A key outcome of this study is to demonstrate that the models proposed to explain subduction zone magmatism cannot afford to ignore the small but important contributions made by the mantle wedge to the incompatible trace element inventory of arc magmas.
Resumo:
Observation-based reconstructions of sea surface temperature from relatively stable periods in the past, such as the Last Glacial Maximum, represent an important means of constraining climate sensitivity and evaluating model simulations. The first quantitative global reconstruction of sea surface temperatures during the Last Glacial Maximum was developed by the Climate Long-Range Investigation, Mapping and Prediction (CLIMAP) project in the 1970s and 1980s. Since that time, several shortcomings of that earlier effort have become apparent. Here we present an updated synthesis of sea surface temperatures during the Last Glacial Maximum, rigorously defined as the period between 23 and 19 thousand years before present, from the Multiproxy Approach for the Reconstruction of the Glacial Ocean Surface (MARGO) project. We integrate microfossil and geochemical reconstructions of surface temperatures and include assessments of the reliability of individual records. Our reconstruction reveals the presence of large longitudinal gradients in sea surface temperature in all of the ocean basins, in contrast to the simulations of the Last Glacial Maximum climate available at present.
Resumo:
Knowing the extent of the West Antarctic Ice Sheet (WAIS) at the Last Glacial Maximum (LGM) is crucial for initiating and calibrating numerical ice sheet models that can predict future ice-sheet change and contributions to sea level. However, empirical data are lacking for key areas of outer continental shelves, where the LGM-WAIS must have terminated. We present detailed marine geophysical and geological data documenting an up to ~12 m-thick sequence of glaciomarine sediments within a relict glacial trough in the outer parts of the Amundsen Sea Embayment. Continuous deposition must have persisted here since at least >40 ka BP, pre-dating the established LGM by >13,000 years. Observations constrain the LGM grounding line to a distinct grounding-zone wedge ~100 km inland from the continental shelf edge. Thus, a substantial shelf area (~6000 km**2) remained ice free through the last glacial cycle.
Resumo:
Pyrite formation within and directly below sapropels in the eastern Mediterranean was governed by the relative rates of sulphide production and Fe liberation and supply to the organic-rich layers. At times of relatively high [SO4]2- reduction, sulphide could diffuse downward from the sapropel and formed pyrite in underlying sediments. The sources of Fe for pyrite formation comprised detrital Fe and diagenetically liberated Fe(II) from sapropel-underlying sediments. In organic-rich sapropels, input of Fe from the water column via Fe sulphide formation in the water may have been important as well. Rapid pyrite formation at high saturation levels resulted in the formation of framboidal pyrite within the sapropels, whereas below the sapropels slow euhedral pyrite formation at low saturation levels occurred. d34S values of pyrite are -33 per mil to -50 per mil. Below the sapropels d34S is lower than within the sapropels, as a result of increased sulphide re-oxidation at times of relatively high sulphide production and concentration when sulphide could escape from the sediment. The percentage of initially formed sulphide that was re-oxidized was estimated from organic carbon fluxes and burial efficiencies in the sediment. It ranges from 34% to 80%, varying significantly between sapropels. Increased palaeoproductivity as well as enhanced preservation contributed to magnified accumulation of organic matter in sapropels.