172 resultados para hemoglobina Köln
em Publishing Network for Geoscientific
Resumo:
Surface mineralogical compositions and their association to modern processes are well known from the east Atlantic and south-west Indian sectors of the Southern Ocean, but data from the interface of these areas - the Prydz Bay-Kerguelen region - is still missing. The objective of our study was to provide mineralogical data of reference samples from this region and to relate these mineralogical assemblages to hinterland geology, weathering, transport and depositional processes. Clay mineral assemblages were analysed by means of X-ray diffraction technique. Heavy mineral assemblages were determined by counting of gravity-separated grains under a polarizing microscope. Results show that by use of clay mineral assemblages four mineralogical provinces can be subdivided: i) continental shelf, ii) continental slope, iii) deep sea, iv) Kerguelen Plateau. Heavy mineral assemblages in the fine sand fraction are relatively uniform except for samples taken from the East Antarctic shelf. Our findings show that mineralogical studies on sediment cores from the study area have the potential to provide insights into past shifts in ice-supported transport and activity and provenance of different water masses (e.g. Antarctic slope current and deep western boundary current) in the Prydz Bay-Kerguelen region.
Resumo:
This study presents the results of high-resolution sedimentological and clay mineralogical investigations on sediments from ODP Sites 908A and 909AlC located in the central Fram Strait. The objective was to reconstruct the paleoclimate and paleoceanography of the high northern latitudes since the middle Miocene. The sediments are characterised in particular by a distinctive input of ice-rafted material, which most probably occurs since 6 Ma and very likely since 15 Ma. A change in the source area at 1 1.2 Ma is clearly marked by variations within clay mineral composition and increasing accumulation rates. This is interpreted as a result of an increase in water mass exchange through the Fram Strait. A further period of increasing exchange between 4-3 Ma is identified by granulometric investigations and points to a synchronous intensification of deep water production in the North Atlantic during this time interval. A comparison of the components of coarse and clay fraction clearly shows that both are not delivered by the Same transport process. The input of the clay fraction can be related to transport mechanisms through sea ice and glaciers and very likely also through oceanic currents. A reconstruction of source areas for clay minerals is possible only with some restrictions. High smectite contents in middle and late Miocene sediments indicate a background signal produced by soil formation together with sediment input, possibly originating from the Greenland- Scotland Ridge. The applicability of clay mineral distribution as a climate proxy for the high northern latitudes can be confirmed. Based on a comparison of sediments from Site 909C, characterised by the smectite/illite and chlorite ratio, with regional and global climatic records (oxygen isotopes), a middle Miocene cooling phase between 14.8-14.6 Ma can be proposed. A further cooling phase between 10-9 Ma clearly shows similarities in its Progress toward drastic decrease in carbonate sedimentation and preservation in the eastern equatorial Pacific. The modification in sea water and atmosphere chemistry may represent a possible link due to the built-up of equatorial carbonate platforms. Between 4.8-4.6 Ma clay mineral distribution indicates a distinct cooling trend in the Fram Strait region. This is not accompanied by relevant glaciation, which would otherwise be indicated by the coarse fraction. The intensification of glaciation in the northern hemisphere is distinctly documented by a rapid increase of illite and chlorite starting from 3.3 Ma, which corresponds to oxygen isotope data trends from North Atlantic.
Resumo:
This paper presents data on geographic and geologic conditions of modern sedimentation in the Lake Untersee, the largest lake in the East Antarctica. Geochemical and sedimentation data indicate that the leading mechanism supplying aluminosilicate sedimentary material to the surface layer of bottom sediments is seasonal melting of the Anuchin glacier and the mountain glacier on the southeastern part of the valley hosting the lake. Strongly reduced conditions in the lowermost 25 m of the water column in the smaller of two depressions of the lake bottom were favorable for enrichment of the bottom sediments in bacteriogenic organic matter, Mo, Au, and Pd. H2S-contaminated water results to significant enrichment of the sediments only in redox-sensitive elements that are able to migrate in anionic complexes and precipitate (co-precipitate) as sulfides.
Resumo:
Surface samples and nine cores from the western Baltic Sea and marginal water bodies were investigated for clay mineral composition. The clay mineral assemblages of recent sediments are rather homogeneous. Variations result mainly from the erosion of different glacial source deposits. High percentages of illite and low kaolinite/chlorite and quartz/feldspar ratios are characteristic for this glacial source. Advection of kaolinite-rich suspensions from the North Sea is believed to account for higher kaolinite/chlorite ratios in the Mecklenburg Bight. A contribution of the rivers Trave and Oder to the western Baltic Sea is indicated by increased smectite values in marginal water bodies. They correspond to increased kaolinite/chlorite and quartz/feldspar ratios. In the main basins the river signal is diluted beyond recognition. Cores from the Arkona, Bornholm and Gotland Basins penetrate through post-Littorina muds and sediments of the Ancylus Lake/Yoldia Sea into Late Glacial sediments of the Baltic Ice Lake. Clay mineral assemblages are characterized by an increase in kaolinite/chlorite ratios from Late Glacial to Holocene sediments, with a distinct shift at each facies change. This allows the distinction and core to core correlation of main lithological units with kaolinite/chlorite ratios. Kaolinite enrichment of Holocene muds corresponds to a brackish-marine facies and may reflect influx of kaolinite-rich suspensions from the North Sea. Cores from the lagoon of the Oderhaff show fluctuations in the contributions of the two main sediment sources: river suspension and glacial deposits during the Late Glacial and Postglacial sequence. Lacustrine sediments, which were deposited prior to 5500 years B.P. are characterized by smectite, kaolinite and quartz from the drainage area of the Oder river. Erosion of coastal and offshore glacial boulder clays with the Littorina transgression supplied a marine component rich in illite, chlorite and feldspars to the brackish muds of the Oderhaff.
Resumo:
Drilling at ODP Site 641 (on the western margin of Galicia Bank, off northwestern Spain) revealed a thin, but pronounced, interval of black shale and gray-green claystone. Our high-resolution study combines the sedimentology, micropaleontology (palynomorphs and others), organic and inorganic geochemistry, and isotopic values of this layer to demonstrate the distinct nature of the sediment and prove that the sequence represents the local sedimentary expression of the global Cenomanian/Turonian Oceanic Anoxic Event (OAE) of Schlanger and Jenkyns (1976), Arthur and Schlanger (1979), and Jenkyns (1980), also called the Cenomanian/Turonian Boundary Event (CTBE). The most striking evidence is that the strong positive d13C excursion characterizing the CTBE sequences in shallow areas can be traced into a pronounced deep-sea expression, thus providing a good stratigraphic marker for the CTBE in various paleosettings. The isotopic excursion at Site 641 coincides with an extremely enriched trace metal content, with values that were previously unknown for the Cretaceous Atlantic. Similar to other CTBE occurrences, the organic carbon content is high (up to 11%) and the organic matter is of dominantly marine origin (kerogen type II). The bulk mineralogy of the CTBE sediments does not differ significantly from the general trend of Cretaceous North Atlantic sediments (dominance of smectite and zeolite with minor amounts of illite and scattered palygorskite, kaolinite, and chlorite); thus, no evidence for either increased volcanic activity nor a drastic climatic change in the borderlands was found. Results from Site 641 are compared with the CTBE section found at Site 398, DSDP Leg 47B (Vigo Seamount at the southern end of the Galicia Bank).
Resumo:
Significant synchronous shifts in the chemistry, mineralogy, grain sizes and color of the sediments at 6 m below sea floor (mbsf) at ODP Site 1195 on the Marion Plateau (NE Australia) are interpreted to reflect a major regional paleoceanographic change: the initiation of the southern province of the Great Barrier Reef (GBR). The onset of this massive carbonate production centre nearby resulted primarily in increased deposition of carbonate-rich sediments of neritic origin. Both sedimentation rate and terrigenous input record a coincident decline attributed to inshore trapping of materials behind the reefs. Our best estimate places the development of reef framework in the southern part of the GBR between 560 and 670 kyr B.P., based on an age model combining magnetostratigraphic and biostratigraphic data. The proposed estimation agrees with previous studies reporting an age between 500 and 930 kyr B.P., constraining more tightly their results. However, it does not support research placing the birth of the GBR in Marine Isotope Stage (MIS) 11 (~400 kyr), nor the theory of a worldwide modern barrier reef development at that time.
Resumo:
This paper is devoted to studies of clay minerals from two cores collected in the northern and central regions of the St. Anna Trough, the largest trough of the Kara Sea. Upper Quaternary glacial, glaciomarine, and marine deposits are characterized by various contents of kaolinite, chlorite, illite, and smectite. It is established that, from older to younger deposits, amounts of kaolinite and chlorite generally decrease, while those of illite and smectite, on the contrary, increase. A joint analysis of distributions of clay and heavy minerals over the section allowed us to refine position of sources for terrigenous matter and their temporal variability. It is shown changes in sources of supply were directly related to climate changes that occurred when passing from glacial to marine sedimentation environments.
Resumo:
Cretaceous to Quaternary sediments recovered at Leg 119 Sites 738 and 744 on the southern tip of the Kerguelen Plateau were studied in order to determine the depositional environment and the paleoceanography of the southern Indian Ocean and especially the long-term glacial history of East Antarctica. Emphasis is given to bulk-sediment composition, grain-size data, and clay mineralogy. The sediment sequence at the two sites is generally of a highly pelagic character, with nannofossil oozes, chalks, and limestones dominant from the Turanian to upper Miocene and diatom oozes dominant within the uppermost Miocene to Holocene interval. The first indication of glaciation at sea level is the occurrence of isolated gravel and terrigenous sand grains, which indicate ice rafting in the middle Eocene interval of 45.0-42.3 Ma. A major intensification of glaciation, probably the onset of continental East Antarctic glaciation, is recorded in sediments of early Oligocene age (36.0 Ma). All major sediment parameters document this event. The clay mineralogy changes from smectite-dominated assemblages, typical of moderately warm and humid climatic conditions in which chemical weathering processes are prevalent, to illite- and chlorite-dominated assemblages, indicative of cooler climates and physical weathering. Ice-rafted debris of both gravel and sand size occurs in large quantities in that interval and coincides with a change in the mode of carbonate deposition. Carbonate contents are relatively high and uniform (90%-95%) in strata younger than early Oligocene; in Oligocene to upper Miocene strata they fluctuate between 65% and 95%. Oligocene and Neogene hiatuses reflect an intensification of oceanic circulation and the increased erosional force of Circumpolar Deep Water. The long-term Cenozoic cooling trend was interrupted by a phase of early Miocene warming indicated by maximum Neogene smectite concentrations. Although ice-rafted debris is present only in minor amounts and mainly in the silt fraction of early Oligocene to late Miocene age, it shows that glaciers advanced to the East Antarctic shoreline throughout that time. Ice-rafting activity drastically increased in latest Miocene time, when carbonate deposition decreased and diatom ooze sedimentation started. This suggests a pronounced intensification of Antarctic glaciation combined with a northward migration of the Polar Front.
Resumo:
During Leg 195 of the Ocean Drilling Program, Site 1202 was drilled in the subtropical northwestern Pacific Ocean beneath the Kuroshio (Black Current) between northern Taiwan and the Ryukyu Island Arc on the northern flank of the I-Lan Ridge at 1274 m water depth. The upper 110 m of the Site 1202 section, composed of dark grey calcareous silty clay, provide an expanded record of environmental changes during the last 28 kyr. The sediments were deposited at high sedimentation rates between 3.0 and 5.0 m/kyr and peak values of 9.0 m/kyr between 15.1 and 11.2 ka BP. Variations in the modes and sources of detrital sediment input, as inferred from sediment granulometry, mineralogy, and elemental XRF-scanner data, reflect changes in environmental boundary conditions related to sea-level changes, Kuroshio variability, and the climate-driven modes of fluvial runoff. The provenance data point to increased sediment supply from northwestern Taiwan between 28 and 19.5 ka BP and from East China sources between 19.5 and 11.2 ka BP. The change in provenance at 19.5 ka BP reflects increased fluvial runoff from the Yangtze River and strong sediment reworking from the East China Sea shelf in the course of increased humidity and postglacial sea-level rise, particularly after 15.1 ka BP. The Holocene was dominated by sediments that originated from rivers in northeastern Taiwan. For the pre-Holocene period prior to 11.2 ka BP, low portions of sortable silt (63-10 ?m) show that the Kuroshio did not enter the Okinawa Trough, because of low sea-level. In turn, high proportions of sortable silt and sediment provenance from northeastern Taiwan point to strong ocean circulation under the direct and persistent influence of the Kuroshio during the Holocene. The reentrance of the Kuroshio to the Okinawa Trough was heralded by two pulses in relative current strengthening at 11.2 and 9.5 ka BP, as documented by stepwise increases in sortable silt in the lower Holocene section. From a global perspective, environmental changes in the southern Okinawa Trough show affinities to climate change in the western Pacific warm pool with little influence of climate teleconnections from the North Atlantic realm, otherwise seen in many other marine and terrestrial palaeoclimate records from southeastern Asia.
Resumo:
Clay mineral and bulk chemical (Si, Al, K, Mg, Sr, La, Ce, Nd) analyses of terrigenous surface sediments on the Siberian-Arctic shelf indicate that there are five regions with distinct, or endmember, sedimentary compositions. The formation of these geochemical endmembers is controlled by sediment provenance and grain size sorting. (1) The shale endmember (Al, K and REE rich sediment) is eroded from fine-grained marine sedimentary rocks of the Verkhoyansk Mountains and Kolyma-Omolon superterrain, and discharged to the shelf by the Lena, Yana, Indigirka and Kolyma Rivers. (2) The basalt endmember (Mg rich) originates from NE Siberia's Okhotsk-Chukotsk volcanic belt and Bering Strait inflow, and is prevalent in Chukchi Sea Sediments. Concentrations of the volcanically derived clay mineral smectite are elevated in Chukchi fine-fraction sediments, corroborating the conclusion that Chukchi sediments are volcanic in origin. (3) The mature sandstone endmember (Si rich) is found proximal to Wrangel Island and sections of the Chukchi Sea's Siberian coast and is derived from the sedimentary Chukotka terrain that comprises these landmasses. (4) The immature sandstone endmember (Sr rich) is abundant in the New Siberian Island region and reflects inputs from sedimentary rocks that comprise the islands. (5) The immature sandstone endmember is also prevalent in the western Laptev Sea, where it is eroded from sedimentary deposits blanketing the Siberian platform that are compositionally similar to those on the New Siberian Islands. Western Laptev can be distinguished from New Siberian Island region sediments by their comparatively elevated smectite concentrations and the presence of the basalt endmember, which indicate Siberian platform flood basalts are also a source of western Laptev sediments. In certain locations grain size sorting noticeably affects shelf sediment chemistry. (1) Erosion of fines by currents and sediment ice rafting contributes to the formation of the coarse-grained sandstone endmembers. (2) Bathymetrically controlled grain size sorting, in which fines preferentially accumulate offshore in deeper, less energetic water, helps distribute the fine-grained shale and basalt endmembers. An important implication of these results is that the observed sedimentary geochemical endmembers provide new markers of sediment provenance, which can be used to track sediment transport, ice-rafted debris dispersal or the movement of particle-reactive contaminants.
Resumo:
This book presents new data on chemical and mineral compositions and on density of altered and fresh igneous rocks from key DSDP and ODP holes drilled on the following main tectonomagmatic structures of the ocean floor: 1. Mid-ocean ridges and abyssal plains and basins (DSDP Legs 37, 61, 63, 64, 65, 69, 70, 83, and 91 and ODP Legs 106, 111, 123, 129, 137, 139, 140, 148, and 169); 2. Seamounts and guyots (DSDP Legs 19, 55, and 62 and ODP Legs 143 and 144); 3. Intraplate rises (DSDP Legs 26, 33, 51, 52, 53, 72, and 74 and ODP Legs 104, 115, 120, 121, and 183); and 4. Marginal seas (DSDP Legs 19, 59, and 60 and ODP Legs 124, 125, 126, 127, 128, and 135). Study results of altered gabbro from the Southwest Indian Ridge (ODP Leg 118) and serpentinized ultramafic rocks from the Galicia margin (ODP Leg 103) are also presented. Samples were collected by the authors from the DSDP/ODP repositories, as well as during some Glomar Challenger and JOIDES Resolution legs. The book also includes descriptions of thin sections, geochemical diagrams, data on secondary mineral assemblages, and recalculated results of chemical analyses with corrections for rock density. Atomic content of each element can be quantified in grams per standard volume (g/1000 cm**3). The suite of results can be used to estimate mass balance, but parts of the data need additional work, which depends on locating fresh analogs of altered rocks studied here. Results of quantitative estimation of element mobility in recovered sections of the upper oceanic crust as a whole are shown for certain cases: Hole 504B (Costa Rica Rift) and Holes 856H, 857C, and 857D (Middle Valley, Juan de Fuca Ridge).
Resumo:
The palaeoclimatic conditions during the Last Glacial Maximum (LGM) of southern South America and especially latitudinal shifts of the southern westerly wind belt are still discussed controversially. Longer palaeoclimatic records covering the Late Quaternary are rare. A particularly sensitive area to Late Quaternary climatic changes is the Norte Chico, northern Chile, because of its extreme climatic gradients. Small shifts of the present climatic zonation could cause significant variations of the terrestrial sedimentary environment which would be recorded in marine terrigenous sediments. To unveil the history of shifting climatic zones in northern Chile, we present a sedimentological study of a marine sediment core (GeoB 3375-1) from the continental slope off the Norte Chico (27.5°S). Sedimentological investigations include bulk- and silt grain-size determinations by sieving, Atterberg separation, and detailed SediGraph analyses. Additionally, clay mineralogical parameters were obtained by X-ray diffraction methods. The 14C-dated core, covering the time span from approximately 10,000 to 120,000 cal. yr B.P., consists of hemipelagic sediments. Terrigenous sedimentological parameters reveal a strong cyclicity, which is interpreted in terms of variations of sediment provenance, modifications of the terrestrial weathering regimes, and modes of sediment input to the ocean. These interpretations imply cyclic variations between comparatively arid climates and more humid conditions with seasonal precipitation for northern Chile (27.5°S) through the Late Quaternary. The cyclicity of the terrigenous sediment parameters is strongly dominated by precessional cycles. For the palaeoclimatic signal, this means that more humid conditions coincide with maxima of the precession index, as e.g. during the LGM. Higher seasonal precipitation for this part of Chile is most likely derived from frontal winter rain of the Southern Westerlies. Thus, the data presented here favour not only an equatorward shift of this atmospheric circulation system during the LGM, but also precession-controlled latitudinal movements throughout the Late Quaternary. Precessional forcing of latitudinal movements of the westerly atmospheric circulation system may be conceivable through teleconnections to the Northern Hemisphere monsoonal system in the Atlantic Ocean region.
Resumo:
Eighty-four sediment samples from four holes at Site 502 and 54 samples from three holes at Site 503 were analyzed for mineral content by semiquantitative X-ray diffraction methods. Site 502 is located in the Western Caribbean, whereas Site 503 lies in the Eastern Pacific (probably on the north flank of the Galapagos Spreading Center). Both sites were chosen to yield continuous core sections for investigations of late Neogene and Quaternary biostratigraphy and magnetostratigraphy and to study events such as the closing of the Isthmus of Panama. Our X-ray diffraction work should provide a framework for further investigations - for example, determination of climatic changes in relationship to clay mineral composition or the influx of terrigeneous sediment components from South America before and after development of the Panama landbridge.
Resumo:
Correlation of mineral associations from sediment recovered on the northwestern Australian continental margin document the juvenile-to-mature evolution of a segment of the Indian Ocean. Lower Cretaceous sediments contain sandy-to-silty radiolarian claystone that consists of highly smectitic mixed-layered illite/smectite (I/S) in addition to minor amounts of diagenetic pyrite, barite, and rhodochrosite. These immature, poorly sorted sediments were derived from nearby continental margin sources. Discrete bentonite layers and abundant smectite are the alteration products of volcanic material deposited during early basin formation. Abundant quartz-replaced radiolarian tests suggest high surface-water productivity, and calcareous fossils indicate water depths were above the calcite compensation depth (CCD) in the juvenile Indian Ocean. The increase in pelagic carbonate from the mid- to Late Cretaceous signals the transition to mature, open-ocean conditions. Similar to other slowly deposited contemporaneous deep-sea sediments, mid- to Upper Cretaceous sediments of the northwestern margin of Australia contain palygorskite. This palygorskite is associated with calcareous sediment across the ooze-to-chalk transition, detrital mixed-layered I/S, and zeolite minerals in places. This palygorskite occurs above the transformation from opal-A to opal-CT. The underlying opal-CT sediment contains abundant smectite and zeolite minerals. Calcareous sediment dominates the Cenozoic, except at abyssal sites that were not inundated by calcareous turbidites. Paleocene and Eocene sediments contain abundant smectite and zeolite minerals derived from the alteration of volcanic material. Palygorskite was found to be associated with sepiolite and dolomite in Miocene sediments from Site 765 in the Argo Basin. Pliocene and Quaternary sediments contain detrital kaolinite and mixed-layered I/S, abundant opal-A radiolarian tests, and minor amounts of pyrite