4 resultados para heavy ion reactions

em Publishing Network for Geoscientific


Relevância:

30.00% 30.00%

Publicador:

Resumo:

We have proposed a method of deducing the chemical compounds found in deep polar ice cores by analyzing the balance between six major ions (Cl-, NO3-, SO4**2-, Na+, Mg2+, and Ca2+). The method is demonstrated for the Holocene and last glacial maximum regions of the Dome Fuji and GRIP ice cores. The dominant compounds depend only on the ion balance and the sequence of chemical reactions. In priority order, the principle salts are calcium sulfate, other sulfates, nitrate, chloride, and carbonate. The chemical abundances deduced by this method agree well with the results of Raman spectroscopy on individual salt inclusions. The abundances in the ice cores are shown to reflect differences in climatic periods (the acidic environment of the Holocene versus the reductive environment of the last glacial maximum) and regional conditions (the marine environment of Antarctica versus the continental environment of Greenland).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We report measurements of magnetic intensity, inclination, initial susceptibility, Koenigsberger's ratio, saturation magnetization, and Curie temperatures of 68 basalt samples from the Leg 83 section of Hole 504B. As in the upper part of the hole, reversely magnetized units predominate. Intensities of natural remanent magnetization vary widely, but the range of variation is an order of magnitude less than in the upper part of the hole. This and the other properties measured indicate that the magnetic characteristics of basalts from Hole 504B have been strongly affected by hydrothermal alteration, particularly in the deeper, Leg 83 section. The alteration states of the magnetic samples were studies using Xray diffraction, electron microprobe, X-ray fluorescence, and ion coupled plasma. Our results suggest three alteration zones in Hole 504B: a low-temperature zone (274.5-890 m) and two high-temperature zones (890-1050 m and 1050- 1350 m), differing in the number of veins observed in the samples and presumably differing in the volumes of hydrothermal fluids which reacted with the basalts.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Among the large variety of particulates in the atmosphere, calcic mineral dust particles have highly reactive surfaces that undergo heterogeneous reactions with nitrogen oxides contiguously. The association between Ca2+, an important proxy indicator of mineral dust and NO3-, a dominant anion in the Antarctic snow pack was analysed. A total of 41 snow cores (~ 1 m each) that represent snow deposited during 2008-2009 were studied along coastal-inland transects from two different regions - the Princess Elizabeth Land (PEL) and central Dronning Maud Land (cDML) in East Antarctica. Correlation statistics showed a strong association (at 99 % significance level) between NO3- and Ca2+ at the near-coastal sections of both PEL (r = 0.72) and cDML (r = 0.76) transects. Similarly, a strong association between these ions was also observed in snow deposits at the inland sections of PEL (r = 0.8) and cDML (r = 0.85). Such systematic associations between Ca2+ and NO3- is attributed to the interaction between calcic mineral dust and nitrogen oxides in the atmosphere, leading to the possible formation of calcium nitrate (Ca(NO3)2). Forward and back trajectory analyses using HYSPLIT model v. 4 revealed that Southern South America (SSA) was an important dust emitting source to the study region, aided by the westerlies. Particle size distribution showed that over 90 % of the dust was in the range < 4 µm, indicating that these dust particles reached the Antarctic region via long range transport from the SSA region. We propose that the association between Ca2+ and NO3- occurs during the long range transport due to the formation of Ca(NO3)2. The Ca(NO3)2 thus formed in the atmosphere undergo deposition over Antarctica under the influence of anticyclonic polar easterlies. However, influence of local dust sources from the nunataks in cDML evidently mask such association in the mountainous region. The study indicates that the input of dust-bound NO3- may contribute a significant fraction of the total NO3- deposited in Antarctic snow.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Herschel Island in the southern Beaufort Sea is a push moraine at the northwestern-most limit of the Laurentide Ice Sheet. Stable water isotope (d18O, dD) and hydrochemical studies were applied to two tabular massive ground ice bodies to unravel their genetic origin. Buried glacier ice or basal regelation ice was encountered beneath an ice-rich diamicton with strong glaciotectonic deformation structures. The massive ice isotopic composition was highly depleted in heavy isotopes (mean d18O: -33 per mil; mean dD: -258 per mil), suggesting full-glacial conditions during ice formation. Other massive ice of unknown origin with a very large d18O range (from -39 to -21 per mil) was found adjacent to large, striated boulders. A clear freezing slope was present with progressive depletion in heavy isotopes towards the centre of the ice body. Fractionation must have taken place during closed-system freezing, possibly of a glacial meltwater pond. Both massive ground ice bodies exhibited a mixed ion composition suggestive of terrestrial waters with a marine influence. Hydrochemical signatures resemble the Herschel Island sediments that are derived from nearshore marine deposits upthrust by the Laurentide ice. A prolonged contact between water feeding the ice bodies and the surrounding sediment is therefore inferred.