15 resultados para hand drawing
em Publishing Network for Geoscientific
Resumo:
In a feasibility study, the potential of proxy data for the temperature and salinity during the Last Glacial Maximum (LGM, about 19 000 to 23 000 years before present) in constraining the strength of the Atlantic meridional overturning circulation (AMOC) with a general ocean circulation model was explored. The proxy data were simulated by drawing data from four different model simulations at the ocean sediment core locations of the Multiproxy Approach for the Reconstruction of the Glacial Ocean surface (MARGO) project, and perturbing these data with realistic noise estimates. The results suggest that our method has the potential to provide estimates of the past strength of the AMOC even from sparse data, but in general, paleo-sea-surface temperature data without additional prior knowledge about the ocean state during the LGM is not adequate to constrain the model. On the one hand, additional data in the deep-ocean and salinity data are shown to be highly important in estimating the LGM circulation. On the other hand, increasing the amount of surface data alone does not appear to be enough for better estimates. Finally, better initial guesses to start the state estimation procedure would greatly improve the performance of the method. Indeed, with a sufficiently good first guess, just the sea-surface temperature data from the MARGO project promise to be sufficient for reliable estimates of the strength of the AMOC.
Resumo:
Stubacher Sonnblickkees (SSK) is located in the Hohe Tauern Range (Eastern Alps) in the south of Salzburg Province (Austria) in the region of Oberpinzgau in the upper Stubach Valley. The glacier is situated at the main Alpine crest and faces east, starting at elevations close to 3050 m and in the 1980s terminated at 2500 m a.s.l. It had an area of 1.7 km² at that time, compared with 1 km² in 2013. The glacier type can be classified as a slope glacier, i.e. the relief is covered by a relatively thin ice sheet and there is no regular glacier tongue. The rough subglacial topography makes for a complex shape in the surface topography, with various concave and convex patterns. The main reason for selecting this glacier for mass balance observations (as early as 1963) was to verify on a complex glacier how the mass balance methods and the conclusions - derived during the more or less pioneer phase of glaciological investigations in the 1950s and 1960s - could be applied to the SSK glacier. The decision was influenced by the fact that close to the SSK there was the Rudolfshütte, a hostel of the Austrian Alpine Club (OeAV), newly constructed in the 1950s to replace the old hut dating from 1874. The new Alpenhotel Rudolfshütte, which was run by the Slupetzky family from 1958 to 1970, was the base station for the long-term observation; the cable car to Rudolfshütte, operated by the Austrian Federal Railways (ÖBB), was a logistic advantage. Another factor for choosing SSK as a glaciological research site was the availability of discharge records of the catchment area from the Austrian Federal Railways who had turned the nearby lake Weißsee ('White Lake') - a former natural lake - into a reservoir for their hydroelectric power plants. In terms of regional climatic differences between the Central Alps in Tyrol and those of the Hohe Tauern, the latter experienced significantly higher precipitation , so one could expect new insights in the different response of the two glaciers SSK and Hintereisferner (Ötztal Alps) - where a mass balance series went back to 1952. In 1966 another mass balance series with an additional focus on runoff recordings was initiated at Vernagtfener, near Hintereisferner, by the Commission of the Bavarian Academy of Sciences in Munich. The usual and necessary link to climate and climate change was given by a newly founded weather station (by Heinz and Werner Slupetzky) at the Rudolfshütte in 1961, which ran until 1967. Along with an extension and enlargement to the so-called Alpine Center Rudolfshütte of the OeAV, a climate observatory (suggested by Heinz Slupetzky) has been operating without interruption since 1980 under the responsibility of ZAMG and the Hydrological Service of Salzburg, providing long-term met observations. The weather station is supported by the Berghotel Rudolfshütte (in 2004 the OeAV sold the hotel to a private owner) with accommodation and facilities. Direct yearly mass balance measurements were started in 1963, first for 3 years as part of a thesis project. In 1965 the project was incorporated into the Austrian glacier measurement sites within the International Hydrological Decade (IHD) 1965 - 1974 and was afterwards extended via the International Hydrological Program (IHP) 1975 - 1981. During both periods the main financial support came from the Hydrological Survey of Austria. After 1981 funds were provided by the Hydrological Service of the Federal Government of Salzburg. The research was conducted from 1965 onwards by Heinz Slupetzky from the (former) Department of Geography of the University of Salzburg. These activities received better recognition when the High Alpine Research Station of the University of Salzburg was founded in 1982 and brought in additional funding from the University. With recent changes concerning Rudolfshütte, however, it became unfeasible to keep the research station going. Fortunately, at least the weather station at Rudolfshütte is still operating. In the pioneer years of the mass balance recordings at SSK, the main goal was to understand the influence of the complicated topography on the ablation and accumulation processes. With frequent strong southerly winds (foehn) on the one hand, and precipitation coming in with storms from the north to northwest, the snow drift is an important factor on the undulating glacier surface. This results in less snow cover in convex zones and in more or a maximum accumulation in concave or flat areas. As a consequence of the accentuated topography, certain characteristic ablation and accumulation patterns can be observed during the summer season every year, which have been regularly observed for many decades . The process of snow depletion (Ausaperung) runs through a series of stages (described by the AAR) every year. The sequence of stages until the end of the ablation season depends on the weather conditions in a balance year. One needs a strong negative mass balance year at the beginning of glacier measurements to find out the regularities; 1965, the second year of observation resulted in a very positive mass balance with very little ablation but heavy accumulation. To date it is the year with the absolute maximum positive balance in the entire mass balance series since 1959, probably since 1950. The highly complex ablation patterns required a high number of ablation stakes at the beginning of the research and it took several years to develop a clearer idea of the necessary density of measurement points to ensure high accuracy. A great number of snow pits and probing profiles (and additional measurements at crevasses) were necessary to map the accumulation area/patterns. Mapping the snow depletion, especially at the end of the ablation season, which coincides with the equilibrium line, is one of the main basic data for drawing contour lines of mass balance and to calculate the total mass balance (on a regular-shaped valley glacier there might be an equilibrium line following a contour line of elevation separating the accumulation area and the ablation area, but not at SSK). - An example: in 1969/70, 54 ablation stakes and 22 snow pits were used on the 1.77 km² glacier surface. In the course of the study the consistency of the accumulation and ablation patterns could be used to reduce the number of measurement points. - At the SSK the stratigraphic system, i.e. the natural balance year, is used instead the usual hydrological year. From 1964 to 1981, the yearly mass balance was calculated by direct measurements. Based on these records of 17 years, a regression analysis between the specific net mass balance and the ratio of ablation area to total area (AAR) has been used since then. The basic requirement was mapping the maximum snow depletion at the end of each balance year. There was the advantage of Heinz Slupetzky's detailed local and long-term experience, which ensured homogeneity of the series on individual influences of the mass balance calculations. Verifications took place as often as possible by means of independent geodetic methods, i.e. monoplotting , aerial and terrestrial photogrammetry, more recently also the application of PHOTOMODELLER and laser scans. The semi-direct mass balance determinations used at SSK were tentatively compared with data from periods of mass/volume change, resulting in promising first results on the reliability of the method. In recent years re-analyses of the mass balance series have been conducted by the World Glacier Monitoring Service and will be done at SSK too. - The methods developed at SSK also add to another objective, much discussed in the 1960s within the community, namely to achieve time- and labour-saving methods to ensure continuation of long-term mass balance series. The regression relations were used to extrapolate the mass balance series back to 1959, the maximum depletion could be reconstructed by means of photographs for those years. R. Günther (1982) calculated the mass balance series of SSK back to 1950 by analysing the correlation between meteorological data and the mass balance; he found a high statistical relation between measured and determined mass balance figures for SSK. In spite of the complex glacier topography, interesting empirical experiences were gained from the mass balance data sets, giving a better understanding of the characteristics of the glacier type, mass balance and mass exchange. It turned out that there are distinct relations between the specific net balance, net accumulation (defined as Bc/S) and net ablation (Ba/S) to the AAR, resulting in characteristic so-called 'turnover curves'. The diagram of SSK represents the type of a glacier without a glacier tongue. Between 1964 and 1966, a basic method was developed, starting from the idea that instead of measuring years to cover the range between extreme positive and extreme negative yearly balances one could record the AAR/snow depletion/Ausaperung during one or two summers. The new method was applied on Cathedral Massif Glacier, a cirque glacier with the same area as the Stubacher Sonnblickkees, in British Columbia, Canada. during the summers of 1977 and 1978. It returned exactly the expected relations, e.g. mass turnover curves, as found on SSK. The SSK was mapped several times on a scale of 1:5000 to 1:10000. Length variations have been measured since 1960 within the OeAV glacier length measurement programme. Between 1965 and 1981, there was a mass gain of 10 million cubic metres. With a time lag of 10 years, this resulted in an advance until the mid-1980s. Since 1982 there has been a distinct mass loss of 35 million cubic metres by 2013. In recent years, the glacier has disintegrated faster, forced by the formation of a periglacial lake at the glacier terminus and also by the outcrops of rocks (typical for the slope glacier type), which have accelerated the meltdown. The formation of this lake is well documented. The glacier has retreated by some 600 m since 1981. - Since August 2002, a runoff gauge installed by the Hydrographical Service of Salzburg has recorded the discharge of the main part of SSK at the outlet of the new Unterer Eisboden See. The annual reports - submitted from 1982 on as a contractual obligation to the Hydrological Service of Salzburg - document the ongoing processes on the one hand, and emphasize the mass balance of SSK and outline the climatological reasons, mainly based on the met-data of the observatory Rudolfshütte, on the other. There is an additional focus on estimating the annual water balance in the catchment area of the lake. There are certain preconditions for the water balance equation in the area. Runoff is recorded by the ÖBB power stations, the mass balance of the now approx. 20% glaciated area (mainly the Sonnblickkees) is measured andthe change of the snow and firn patches/the water content is estimated as well as possible. (Nowadays laserscanning and ground radar are available to measure the snow pack). There is a net of three precipitation gauges plus the recordings at Rudolfshütte. The evaporation is of minor importance. The long-term annual mean runoff depth in the catchment area is around 3.000 mm/year. The precipitation gauges have measured deficits between 10% and 35%, on average probably 25% to 30%. That means that the real precipitation in the catchment area Weißsee (at elevations between 2,250 and 3,000 m) is in an order of 3,200 to 3,400 mm a year. The mass balance record of SSK was the first one established in the Hohe Tauern region (and now since the Hohe Tauern National Park was founded in 1983 in Salzburg) and is one of the longest measurement series worldwide. Great efforts are under way to continue the series, to safeguard against interruption and to guarantee a long-term monitoring of the mass balance and volume change of SSK (until the glacier is completely gone, which seems to be realistic in the near future as a result of the ongoing global warming). Heinz Slupetzky, March 2014
Resumo:
The Box corer is a marine geological and biological sampling tool for soft sediments in lakes or oceans. It is deployed from a research vessel with a deep sea wire and suitable for any water depth. It is designed for a minimum of disturbance of the sediment surface by bow wave effects which is important for quantitative investigations of the benthos micro- to macrofauna, geochemical processes, sampling of bottom water or sedimentology. The large box corer version with an area of 2,500 cm? is frequently used on research vessels since the 1980th years. This data set is a publication of the engeneering drawings.
Resumo:
The knowledge about processes concerning perception and understanding is of paramount importance for designing means of communication like maps and charts. This is especially the case, if one does not want to lose sight of the map-user and if map-design is to be orientated along the map-users needs and preferences in order to improve the cartographic product's usability. A scientific approach to visualization can help to achieve useable results. The insights achieved by such an approach can lead to modes of visualization that are superior to those, which have seemingly proved their value in praxis - so-called "bestpractices" -, concerning their utility and efficiency. This thesis shows this by using the example of visualizing the limits of bodies of waters in the Southern Ocean. After making some introductorily remarks on the chosen mode of problem-solution in chapter one, which simultaneously illustrate the flow of work while working on the problem, in chapter two the relevant information concerning the drawing of limits in the Southern Ocean is outlined. Chapter 3 builds the theoretical framework, which is a multidisciplinary approach to representation. This theoretical framework is based on "How Maps Work" by the American Cartographer MacEachren (1995/2004). His "scientific approach to visualization" is amended and adjusted by the knowledge gained from recent findings of the social sciences where necessary. So, the approach suggested in this thesis represents a synergy of psychology, sociology, semiotics, linguistics, communication theory and cartography. It follows the tradition of interdisciplinary research getting over the boundaries of a single scientific subject. The achieved holistic approach can help to improve the usability of cartographic products. It illustrates on the one hand those processes taking place while perceiving and recognizing cartographic information - so-called bottom-up-processes. On the other hand it illuminates the processes which happen during understanding this information in so-called top-down-processes. Bottom-up- and top-down-processes are interdependent and inseparably interrelated and therefore cannot be understood without each other. Regarding aspects of usability the approach suggested in this thesis strongly focuses on the map-user. This is the reason why the phenomenon of communication gains more weight than in MacEachren's map-centered approach. Because of this, in chapter 4 a holistic approach to communication is developed. This approach makes clear that only the map-user can evaluate the usability of a cartographic product. Only if he can extract the information relevant for him from the cartographical product, it is really useable. The concept of communication is well suited to conceive that. In case of the visualization of limits of bodies of water in the Southern Ocean, which is not complex enough to illustrate all results of the theoretical considerations, it is suggested to visualize the limits with red lines. This suggestion deviates from the commonly used mode of visualization. So, this thesis shows how theory is able to ameliorate praxis. Chapter 5 leads back to the task of fixing limits of the bodies of water in the area of concern. A convention by the International Hydrographic Organization (IHO) states that those limits should be drawn by using meridians, parallels, rhumb lines and bathymetric data. Based on the available bathymetric data both a representation and a process model are calculated, which should support the drawing of the limits. The quality of both models, which depends on the quality of the bathymetric data at hand, leads to the decision that the representation model is better suited to support the drawing of limits.