48 resultados para global control

em Publishing Network for Geoscientific


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Sequence boundary ages determined in shallow-water sediments obtained from ODP (Ocean Drilling Program) Leg 189 Site 1171 (South Tasman Rise) compare well with other stratigraphic records (New Jersey, United States, and northwestern Europe) and d18O increases from deep-sea records, indicating that significant (>10 m) eustatic changes occurred during the early to middle Eocene (51-42 Ma). Sequence boundaries were identified and dated using lithology, bio- and magnetostratigraphy, water-depth changes, CaCO3 content, and physical properties (e.g., photospectrometry). They are characterized by a sharp bioturbated surface, low CaCO3 content, and an abrupt increase in glauconite above the surface. Foraminiferal biofacies and planktonic/benthic foraminiferal ratios were used to estimate water-depth changes. Ages of six sequence boundaries (50.9, 49.2, 48.5-47.8, 47.1, 44.5, and 42.6 Ma) from Site 1171 correlate well to the timings of d18O increases and sequence boundaries identified from other Eocene studies. The synchronous nature of sequence boundary development from globally distal sites and d18O increases indicates a global control and that glacioeustasy was operating in this supposedly ice-free world. This is supported by previous modeling studies and atmospheric pCO2 estimates showing that the first time pCO2 levels decreased below a threshold that would support the development of an Antarctic ice sheet occurred at ca. 51 Ma. Estimates of sea-level amplitudes range from ~20 m for the early Eocene (51-49 Ma) and ~25 m to ~45 m for the middle Eocene (48-42 Ma) using constraints established for Oligocene d18O records.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

To determine the role lemmings play in structuring plant communities and their contribution to the 'greening of the Arctic', we measured plant cover and biomass in 50 + year old lemming exclosures and control plots in the coastal tundra near Barrow, Alaska. The response of plant functional types to herbivore exclusion varied among land cover types. In general, the abundance of lichens and bryophytes increased with the exclusion of lemmings, whereas graminoids decreased, although the magnitude of these responses varied among land cover types. These results suggest that sustained lemming activity promotes a higher biomass of vascular plant functional types than would be expected without their presence and highlights the importance of considering herbivory when interpreting patterns of greening in the Arctic. In light of the rapid environmental change ongoing in the Arctic and the potential regional to global implications of this change, further exploration regarding the long-term influence of arvicoline rodents on ecosystem function (e.g. carbon and energy balance) should be considered a research priority.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Extreme weather events can have negative impacts on species survival and community structure when surpassing lethal thresholds. Extreme winter warming events in the Arctic rapidly melt snow and expose ecosystems to unseasonably warm air (2-10 °C for 2-14 days), but returning to cold winter climate exposes the ecosystem to lower temperatures by the loss of insulating snow. Soil animals, which play an integral part in soil processes, may be very susceptible to such events depending on the intensity of soil warming and low temperatures following these events. We simulated week-long extreme winter warming events - using infrared heating lamps, alone or with soil warming cables - for two consecutive years in a sub-Arctic dwarf shrub heathland. Minimum temperatures were lower and freeze-thaw cycles were 2-11 times more frequent in treatment plots compared with control plots. Following the second event, Acari populations decreased by 39%; primarily driven by declines of Prostigmata (69%) and the Mesostigmatic nymphs (74%). A community-weighted vertical stratification shift occurred from smaller soil dwelling (eu-edaphic) Collembola species dominance to larger litter dwelling (hemi-edaphic) species dominance in the canopy-with-soil warming plots compared with controls. The most susceptible groups to these winter warming events were the smallest individuals (Prostigmata and eu-edaphic Collembola). This was not apparent from abundance data at the Collembola taxon level, indicating that life forms and species traits play a major role in community assembly following extreme events. The observed shift in soil community can cascade down to the micro-flora affecting plant productivity and mineralization rates. Short-term extreme weather events have the potential to shift community composition through trait composition with potentially large consequences for ecosystem development.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We review the different sources of uncertainty affecting the oxygen isotopic composition of planktonic foraminifera and present a global planktonic foraminifera oxygen isotope data set that has been assembled within the MARGO project for the Late Holocene time slice. The data set consists of over 2100 data from recent sediment with thorough age control, that have been checked for internal consistency. We further examine how the oxygen isotopic composition of fossil foraminifera is related to hydrological conditions, based on published results on living foraminifera from plankton tows and cultures. Oxygen isotopic values (delta18O) of MARGO recent fossil foraminifera are 0.2-0.8 per mil higher than those of living foraminifera. Our results show that this discrepancy is related to the stratification of the upper water mass and generally increases at low latitudes. Therefore, as stratification of surface waters and seasonality depends on climatic conditions, the relationship between temperature and delta18O established on fossil foraminifera from recent sediment must be used with caution in paleoceanographic studies. Before models predicting seasonal flux, abundance and delta18O composition of a foraminiferal population in the sediment are available, we recommend studying relative changes in isotopic composition of fossil planktonic foraminifera. These changes primarily record variations in temperature and oxygen isotopic composition of sea water, although part of the changes might reflect modifications of planktonic foraminifera seasonality or depth habitat

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The contributions of total organic carbon and nitrogen to elemental cycling in the surface layer of the Sargasso Sea are evaluated using a 5-yr time-series data set (1994-1998). Surface-layer total organic carbon (TOC) and total organic nitrogen (TON) concentrations ranged from 60 to 70 µM C and 4 to 5.5 µM N seasonally, resulting in a mean C : N molar ratio of 14.4±2.2. The highest surface concentrations varied little during individual summer periods, indicating that net TOC production ceased during the highly oligotrophic summer season. Winter overturn and mixing of the water column were both the cause of concentration reductions and the trigger for net TOC production each year following nutrient entrainment and subsequent new production. The net production of TOC varied with the maximum in the winter mixed-layer depth (MLD), with greater mixing supporting the greatest net production of TOC. In winter 1995, the TOC stock increased by 1.4 mol C/m**2 in response to maximum mixing depths of 260 m. In subsequent years experiencing shallower maxima in MLD (<220 m), TOC stocks increased <0.7 mol C/m**2. Overturn of the water column served to export TOC to depth (>100 m), with the amount exported dependent on the depth of mixing (total export ranged from 0.4 to 1.4 mol C/m**2/yr). The exported TOC was comprised both of material resident in the surface layer during late summer (resident TOC) and material newly produced during the spring bloom period (fresh TOC). Export of resident TOC ranged from 0.5 to 0.8 mol C/m**2/yr, covarying with the maximum winter MLD. Export of fresh TOC varied from nil to 0.8 mol C/m**2/yr. Fresh TOC was exported only after a threshold maximum winter MLD of ~200 m was reached. In years with shallower mixing, fresh TOC export and net TOC production in the surface layer were greatly reduced. The decay rates of the exported TOC also covaried with maximum MLD. The year with deepest mixing resulted in the highest export and the highest decay rate (0.003 1/d) while shallow and low export resulted in low decay rates (0.0002 1/d), likely a consequence of the quality of material exported. The exported TOC supported oxygen utilization at dC : dO2 molar ratios ranging from 0.17 when TOC export was low to 0.47 when it was high. We estimate that exported TOC drove 15-41% of the annual oxygen utilization rates in the 100-400 m depth range. Finally, there was a lack of variability in the surface-layer TON signal during summer. The lack of a summer signal for net TON production suggests a small role for N2 fixation at the site. We hypothesize that if N2 fixation is responsible for elevated N : P ratios in the main thermocline of the Sargasso Sea, then the process must take place south of Bermuda and the signal transported north with the Gulf Stream system.