2 resultados para gille

em Publishing Network for Geoscientific


Relevância:

10.00% 10.00%

Publicador:

Resumo:

CFC-11 (CCl3F), CFC-12 (CCl2F2), HF, and SF6 products from limb-viewing satellite instruments are provided in the form of monthly zonal mean time series obtained from HALOE, MIPAS, ACE-FTS, and HIRDLS within the time period 1991-2010. The data products are made available as part of the Stratosphere-troposphere Processes And their Role in Climate (SPARC) Data Initiative. The trace gas time series extend from the mid-troposphere to as high as the mesosphere. The zonal monthly mean time series are calculated on the SPARC Data Initiative climatology grid using 5° latitude bins and 28 pressure levels. The zonal monthly mean volume mixing ratio (VMR) and the standard deviation along with the number of averaged data values are given for each month, latitude bin, and pressure level. Furthermore, the mean, minimum, and maximum local solar time, the average latitude, and the average day of the month within each bin for one selected pressure level are provided. The time series of all variables are saved in a consistent netcdf format.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The disintegration of ice shelves, reduced sea-ice and glacier extent, and shifting ecological zones observed around Antarctica (Cook et al., 2005, doi:10.1126/science.1104235; Stammerjohn et al., 2008, doi:10.1016/j.dsr2.2008.04.026) highlight the impact of recent atmospheric (Steig et al., 2009, doi:10.1038/nature07669) and oceanic warming (Gille, 2002, doi:10.1126/science.1065863) on the cryosphere. Observations (Cook et al., 2005, doi:10.1126/science.1104235; Stammerjohn et al., 2008, doi:10.1016/j.dsr2.2008.04.026) and models (Pollard and DeConto, 2009, doi:10.1038/nature07809) suggest that oceanic and atmospheric temperature variations at Antarctica's margins affect global cryosphere stability, ocean circulation, sea levels and carbon cycling. In particular, recent climate changes on the Antarctic Peninsula have been dramatic, yet the Holocene climate variability of this region is largely unknown, limiting our ability to evaluate ongoing changes within the context of historical variability and underlying forcing mechanisms. Here we show that surface ocean temperatures at the continental margin of the western Antarctic Peninsula cooled by 3-4 °C over the past 12,000?years, tracking the Holocene decline of local (65° S) spring insolation. Our results, based on TEX86 sea surface temperature (SST) proxy evidence from a marine sediment core, indicate the importance of regional summer duration as a driver of Antarctic seasonal sea-ice fluctuations (Huybers and Denton, 2008, doi:10.1038/ngeo311). On millennial timescales, abrupt SST fluctuations of 2-4 °C coincide with globally recognized climate variability (Mayewski et al., 2004, doi:10.1016/j.yqres.2004.07.001). Similarities between our SSTs, Southern Hemisphere westerly wind reconstructions (Moreno et al., 2010, doi:10.1130/G30962.1) and El Niño/Southern Oscillation variability (Conroy et al., 2008, doi:10.1016/j.quascirev.2008.02.015) indicate that present climate teleconnections between the tropical Pacific Ocean and the western Antarctic Peninsula (Yuan et al., 2004, doi:10.1017/S0954102004002238) strengthened late in the Holocene epoch. We conclude that during the Holocene, Southern Ocean temperatures at the western Antarctic Peninsula margin were tied to changes in the position of the westerlies, which have a critical role in global carbon cycling (Moreno et al., 2010, doi:10.1130/G30962.1; Anderson et al., 2009, doi:10.1126/science.1167441).