100 resultados para gateways

em Publishing Network for Geoscientific


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Greenland ice sheet is accepted as a key factor controlling the Quaternary glacial scenario. However, the origin and mechanisms of major Arctic glaciation starting at 3.15 Ma and culminating at 2.74 Ma are still controversial. For this phase of intense cooling Ravelo et al. proposed a complex gradual forcing mechanism. In contrast, our new submillennial-scale paleoceanographic records from the Pliocene North Atlantic suggest a far more precise timing and forcing for the initiation of northern hemisphere glaciation (NHG), since it was linked to a 2-3 °C surface water warming during warm stages from 2.95 to 2.82 Ma. These records support previous models, claiming that the final closure of the Panama Isthmus (3.0- ~2.5 Ma induced an increased poleward salt and heat transport. Associated strengthening of North Atlantic Thermohaline Circulation and in turn, an intensified moisture supply to northern high latitudes resulted in the build-up of NHG, finally culminating in the great, irreversible climate crash at marine isotope stage G6 (2.74 Ma). In summary, there was a two-step threshold mechanism that marked the onset of NHG with glacial-to-interglacial cycles quasi-persistent until today.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Modern thermohaline circulation plays a role in latitudinal heat transport and in deep-ocean ventilation, yet ocean circulation may have functioned differently during past periods of extreme warmth, such as the Cretaceous. The Late Cretaceous (100-65 Ma) was an important period in the evolution of the North Atlantic Ocean, characterized by opening ocean gateways, long-term climatic cooling and the cessation of intermittent periods of anoxia (oceanic anoxic events, OAEs). However, how these phenomena relate to deep-water circulation is unclear. We use a proxy for deep-water mass composition (neodymium isotopes; e-Nd) to show that, at North Atlantic ODP Site 1276, deep waters shifted in the early Campanian (~78-83 Ma) from e-Nd values of ~-7 to values of ~-9, consistent with a change in the style of deep-ocean circulation but >10 Myr after a change in bottom water oxygenation conditions. A similar, but more poorly dated, trend exists in e-Nd data from DSDP Site 386. The Campanian e-Nd transition observed in the North Atlantic records is also seen in the South Atlantic and proto-Indian Ocean, implying a widespread and synchronous change in deep-ocean circulation. Although a unique explanation does not exist for the change at present, we favor an interpretation that invokes Late Cretaceous climatic cooling as a driver for the formation of Southern Component Water, which flowed northward from the Southern Ocean and into the North Atlantic and proto-Indian Oceans.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Sediments recovered at ODP Site 984 on the Reykjanes Ridge provided multicentennial-scale records (SST, planktic and benthic delta18O, IRD and magnetic susceptibility) of Late Pliocene climate change over the onset of Northern Hemisphere glaciation (NHG), 2.95-2.82 Ma. Short-term climate variations prior and after the onset of continent-wide glaciation were compared to test the hypothesis, whether Dansgaard-Oeschger (DO) cycles may have been triggered by continental ice breakouts. By means of spectral analyses for two selected interglacial stages prior to and after NHG (G15 and G1), we found that climate variability resembled that of the Holocene and the mid-Pliocene warm period. In contrast, DO-like periodicities near 1470, 2900, and 4400 yr indeed only occurred in glacial stages after the onset of NHG (G14, G6, and 104), but hardly in stage G20 prior to the onset. These results suggest a causal link between DO cycles and the Late Pliocene onset of major NHG and ice breakouts in the North Atlantic. This data set provides all primary data and spectral analysis related to this scientific work.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Foraminiferal assemblage and stable isotopic data are presented for three Quaternary piston cores from Ulleung Basin, East Sea of Korea ((ESK) Japan Sea) near the Korean Peninsula. Major changes in both temperature and salinity strongly affected surface and deep waters of the ESK during the transition from the Last Glacial Maximum (LGM) to the middle Holocene. Local environmental effects dominated during the LGM and the Bølling/Allerød (B/A) when the ESK became semi-isolated from the Pacific Ocean. Regional/global influences dominated following the B/A, after sufficient reconnection with the Pacific. This is reflected in the foraminiferal d18O record which was largely salinity-controlled before the Younger Dryas (YD) and temperature-controlled after the YD. Paleoceanographic changes in the ESK during the last deglaciation reflect sequential reconnection with the Pacific Ocean, through gateways, first (B/A) in the north (Tsugaru Strait) and later (Holocene) in the south (Korea Strait).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

ODP Site 1124, located 600 km east of the North Island of New Zealand, records post-middle Oligocene variations in the Pacific Deep Western Boundary Current (DWBC) and New Zealand's climatic and tectonic evolution. Sediment parameters, such as terrigenous grain size, flux, magnetic fabric, and non-depositional episodes, are used to interpret DWBC intensity and Antarctic climate. Interpretations of DWBC velocities indicate that the Antarctic Circumpolar Current reached modern intensities at ~23 Ma, as the tectonic seaways expanded, completing the thermal isolation of Antarctica. Periods of more intense bottom water formation are suggested by the presence of hiatuses formed under the DWBC at 22.5-17.6, 16.5-15, and 14-11 Ma. The oldest interval of high current intensity occurs within a climatically warm period during which the intensity of thermohaline circulation around Antarctica increased as a result of recent opening of circum-Antarctic gateways. The younger hiatuses represent glacial periods on Antarctica and major fluctuations in the East Antarctic Ice Sheet, whereas intervals around the hiatuses represent times of relative warmth, but with continued current activity. The period between 11 to 9 Ma is characterized by conditions surrounding a high velocity DWBC around the time of the formation and stabilization of the West Antarctic Ice Sheet. The increased terrigenous input may result from either changing Antarctic conditions or more direct sediment transport from New Zealand. The Pacific DWBC did not exert a major influence on sedimentation at Site 1124 from 9 Ma to the present; the late Miocene to Pleistocene sequence is more influenced by the climatic and tectonic history of New Zealand. Despite the apparent potential for increased sediment supply to this site from changes in sediment channeling, increasing rates of mountain uplift, and volcanic activity, terrigenous fluxes remain low and constant throughout this younger period.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This thesis examines the closure history of the Central American Seaway (CAS) and its effect on changes in ocean circulation and climate during the time interval from ~6 - 2.5 Ma. It was accomplished within the DFG Research Unit "Impact of Gateways on Ocean Circulation, Climate and Evolution" at the University of Kiel. Proxy records from Ocean Drilling Program (ODP) Sites 999 and 1000 (Caribbean), and from ODP Sites 1237, 1239 and 1241 (low-latitude east Pacific) are developed and examined. In addition, previously established proxy data from Atlantic Sites 925/926 (Ceara Rise) and 1006 (western Great Bahama Bank) and from two east Pacific sites (851, 1236) are included for interpretations. The main objectives of this study are (1) to acquire a consistent stratigraphic framework for all sites, (2) to reconstruct Pliocene changes in Caribbean and tropical east Pacific upper ocean water masses (i.e. temperature, salinity, thermocline depth), and (3) to identify potential underlying forcing mechanisms.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Cenozoic volcanic activity on Iceland has been recorded in North Atlantic sediments drilled during several Ocean Drilling Program (ODP)/Deep Sea Drilling Project legs (Legs 104, 151, 152, 162, and 163). Leg 162 (North Atlantic-Arctic Gateways II) recovered ash layers at Sites 982, 985, and 907 (Jansen, Raymo, Blum, et al., 1996, doi:10.2973/odp.proc.ir.162.1996). The revisited Site 907 was first drilled during Leg 151, and the ash from this site has been described in detail by Lacasse et al. (1996, doi:10.2973/odp.proc.sr.151.122.1996) and Werner et al. (1996, doi:10.2973/odp.proc.sr.151.123.1996). Site 982 is located within the Hatton-Rockall Basin on the Rockall Plateau, which is situated west of the British Isles. Site 985 is located northeast of Iceland at the foot of the eastern slope of the Iceland Plateau, adjacent to the Norwegian Basin. Here we report chemical analyses of Neogene tephra layers from Holes 982A, 983B, 982C, 985A, and 985B. The sedimentary sequence at Site 982 spans the lower Miocene-Holocene; Site 985 recovered sediments spanning the upper Oligocene-Holocene. Twenty-two distinct ash layers and ash-bearing sediments were sampled in Holes 982A-982C (Cores 162-982A-16H through 24H, 162-982B-14H through 56X, and 162-982C-15H through 27H), and 59 ash layers were sampled in Holes 985A and 985B (Cores 162-985A-11H through 59X, and 162-985B-11H through 14H). Almost 50% of the sampled ash is strongly altered (predominantly from Site 985). A cluster of altered thin layers in the lower Pliocene of Site 985 (top of Unit III) is remarkable.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Recent drilling on the Kerguelen Plateau (Ocean Drilling Program Leg 183) has provided a unique and exciting high latitude record of palaeoceanographic change during the Cenomanian-Turonian in the Southern Ocean. The benthic foraminiferal succession at Site 1138 records the evolution of the Kerguelen Plateau from a subaerially exposed platform in the Cenomanian to a bathyal, pelagic environment in the early Turonian, following a major transgressive pulse and increased thermal subsidence of the Kerguelen Plateau, which led to a sea-level rise of possibly several hundred metres. Diversified benthic foraminiferal assemblages indicate an upper bathyal, mesotrophic setting after the peak of the transgression. The assemblages exhibit strong similarities to temperate, shelf and slope assemblages in the Northern Hemisphere. This bimodal distribution reflects the existence of open oceanic gateways and a dynamic trans-hemispheric global circulation. Equatorial assemblages are characterized by a low-diversity, high carbon flux biofacies. Assemblages from Alaska demonstrate high organic productivity and low oxygen conditions and the prevalence of elevated temperatures on the flooded shelf of the North Slope. Our results show that the distribution of upper bathyal benthic foraminifera was strongly modulated by carbon flux and oxygenation fluctuations, and not by physical migration barriers.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A core transect across the southwestern Greenland Sea reveals coeval events of extremely negative planktic and benthic delta13C excursions between 40 and 87 ka. The most pronounced event, event 1, began at peak Dansgaard-Oeschger stadial 22 (85 ka) with a duration of 18 k.y. During this episode, incursions of Atlantic Intermediate Water caused a bottom-water warming of up to 8 °C. The amplitude, timing, and geographic pattern of the delta13C events suggest that this bottom-water warming triggered clathrate instability along the East Greenland slope and a methane-induced depletion of delta13CDIC (DIC- dissolved inorganic carbon). Since delta13C event 1 matches a major peak in atmospheric CH4 concentration, this clathrate destabilization may have contributed to the rise in atmospheric CH4 and thus to climate warming over marine isotope stage 5.1.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Denmark Strait Overflow (DSO) today compensates for the northward flowing Norwegian and Irminger branches of the North Atlantic Current that drive the Nordic heat pump. During the Last Glacial Maximum (LGM), ice sheets constricted the Denmark Strait aperture in addition to ice eustatic/isostatic effects which reduced its depth (today ~630 m) by ~130 m. These factors, combined with a reduced north-south density gradient of the water-masses, are expected to have restricted or even reversed the LGM DSO intensity. To better constrain these boundary conditions, we present a first reconstruction of the glacial DSO, using four new and four published epibenthic and planktic stable-isotope records from sites to the north and south of the Denmark Strait. The spatial and temporal distribution of epibenthic delta18O and delta13C maxima reveals a north-south density gradient at intermediate water depths from sigma0 ~28.7 to 28.4/28.1 and suggests that dense and highly ventilated water was convected in the Nordic Seas during the LGM. However, extremely high epibenthic delta13C values on top of the Mid-Atlantic Ridge document a further convection cell of Glacial North Atlantic Intermediate Water to the south of Iceland, which, however, was marked by much lower density (sigma0 ~28.1). The north-south gradient of water density possibly implied that the glacial DSO was directed to the south like today and fed Glacial North Atlantic Deep Water that has underthrusted the Glacial North Atlantic Intermediate Water in the Irminger Basin.