10 resultados para gas-phase fragmentations
em Publishing Network for Geoscientific
Resumo:
Results of studying isotopic composition of helium in underground fluids of the Baikal-Mongolian region during the last quarter of XX century are summarized. Determinations of 3He/4He ratio in 139 samples of gas phase from fluids, collected at 104 points of the Baikal rift zone and adjacent structures are given. 3He/4He values lie within the range from 1x10**-8 (typical for crustal radiogenic helium) to 1.1x10**-5 (close to typical MORB reservoir). Repeated sampling in some points during more than 20 years showed stability of helium isotopic composition in time in each of them at any level of 3He/4He values. There is no systematic differences of 3He/4He in samples from surface water sources and deeper intervals of boreholes in the same areas. Universal relationship between isotopic composition of helium and general composition of gas phase is absent either, but the minimum 3He/4He values occurred in methane gas of hydrocarbon deposits, whereas in nitrogen and carbon dioxide gases of helium composition varied (in the latter maximum 3He/4He values have been measured). According to N2/Ar_atm ratio nitrogen gases are atmospheric. In carbonic gas fN2/fNe ratio indicates presence of excessive (non-atmogenic) nitrogen, but the attitude CO2/3He differs from one in MORB. Comparison of helium isotopic composition with its concentration and composition of the main components of gas phase from fluids shows that it is formed under influence of fractionation of components with different solubility in the gas-water system and generation/consumption of reactive gases in the crust. Structural and tectonic elements of the region differ from the spectrum of 3He/4He values. At the pre-Riphean Siberian Platform the mean 3He/4He = (3.6+/-0.9)x10**- 8 is very close to radiogenic one. In the Paleozoic crust of Khangay 3He/4He = (16.3+/-4.6)x10**-8, and the most probable estimate is (12.3+/-2.9)x10**-8. In structures of the eastern flank of the Baikal rift zone (Khentei, Dauria) affected by the Mz-Kz activization 3He/4He values range from 4.4x10**-8 to 2.14x10**-6 (average 0.94x10**-6). Distribution of 3He/4He values across the strike of the Baikal rift zone indicates advective heat transfer from the mantle not only in the rift zone, but also much further to the east. In fluids of the Baikal rift zone range of 3He/4He values is the widest: from 4x10**-8 to 1.1x10**-5. Their variations along the strike of the rift zone are clearly patterned, namely, decrease of 3He/4He values in both directions from the Tunka depression. Accompanied by decrease in density of conductive heat flow and in size of rift basins, this trend indicates decrease in intensity of advective heat transfer from the mantle to peripheral segments of the rift zone. Comparing this trend with data on other continental rift zones and mid-ocean ridges leads to the conclusion about fundamental differences in mechanisms of interaction between the crust and the mantle in these environments.
Resumo:
An experiment was conceived in which we monitored degradation of GlcDGD. Independent of the fate of the [14C]glucosyl headgroup after hydrolysis from the glycerol backbone, the 14C enters the aqueous or gas phase whereas the intact lipid is insoluble and remains in the sediment phase. Total degradation of GlcDGD then is obtained by combining the increase of radioactivity in the aqueous and gaseous phases. We chose two different sediment to perform this experiment. One is from microbially actie surface sediment sampled in February 2010 from the upper tidal flat of the German Wadden Sea near Wremen (53° 38' 0N, 8° 29' 30E). The other one is deep subsurface sediments recovered from northern Cascadia Margin during Integrated Ocean Drilling Program Expedition 311 [site U1326, 138.2 meters below seafloor (mbsf), in situ temperature 20 °C, water depth 1,828 m. We performed both alive and killed control experiments for comparison. Surface and subsurface sediment slurry were incubated in the dark at in situ temperature, 4 °C and 20 °C for 300 d, respectively. The sterilized slurry was stored at 20 °C. All incubations were carried out under N2 headspace to ensure anaerobic conditions. The sampling frequency was high during the first half-month, i.e., after 1, 2, 7, and 14 d; thereafter, the sediment slurry was sampled every 2 months. At each time point, samples were taken in triplicate for radioactivity measurements. After 300 d of incubation, no significant changes of radioactivity in the aqueous phase were detected. This may be the result of either the rapid turnover of released [14C] glucose or the relatively high limit of detection caused by the slight solubility (equivalent to 2% of initial radioactivity) of GlcDGD in water. Therefore, total degradation of GlcDGD in the dataset was calculated by combining radioactivity of DIC, CH4, and CO2, leading to a minimum estimate.
Resumo:
A shallow gas depth-contour map covering the Skagerrak-western Baltic Sea region has been constructed using a relatively dense grid of existing shallow seismic lines. The digital map is stored as an ESRI shape file in order to facilitate comparison with other data from the region. Free gas usually occurs in mud and sandy mud but is observed only when sediment thickness exceeds a certain threshold value, depending on the water depth of the area in question. Gassy sediments exist at all water depths from approx. 20 m in the coastal waters of the Kattegat to 360 m in the Skagerrak. In spite of the large difference in water depths, the depth of free gas below seabed varies only little within the region, indicating a relatively fast movement of methane in the gas phase towards the seabed compared to the rate of diffusion of dissolved methane. Seeps of old microbial methane occur in the northern Kattegat where a relatively thin cover of sandy sediments exists over shallow, glacially deformed Pleistocene marine sediments. Previous estimates of total methane escape from the area may be correct but the extrapolation of local methane seepage rate data to much larger areas on the continental shelf is probably not justified. Preliminary data on porewater chemistry were compared with the free gas depth contours in the Aarhus Bay area, which occasionally suffers from oxygen deficiency, in order to examine if acoustic gas mapping may be used for monitoring the condition of the bay.
Resumo:
Sediments at the southern summit of Hydrate Ridge display two distinct modes of gas hydrate occurrence. The dominant mode is associated with active venting of gas exsolved from the accretionary prism and leads to high concentrations (15%-40% of pore space) of gas hydrate in seafloor or near-surface sediments at and around the topographic summit of southern Hydrate Ridge. These near-surface gas hydrates are mainly composed of previously buried microbial methane but also contain a significant (10%-15%) component of thermogenic hydrocarbons and are overprinted with microbial methane currently being generated in shallow sediments. Focused migration pathways with high gas saturation (>65%) abutting the base of gas hydrate stability create phase equilibrium conditions that permit the flow of a gas phase through the gas hydrate stability zone. Gas seepage at the summit supports rapid growth of gas hydrates and vigorous anaerobic methane oxidation. The other mode of gas hydrate occurs in slope basins and on the saddle north of the southern summit and consists of lower average concentrations (0.5%-5%) at greater depths (30-200 meters below seafloor [mbsf]) resulting from the buildup of in situ-generated dissolved microbial methane that reaches saturation levels with respect to gas hydrate stability at 30-50 mbsf. Net rates of sulfate reduction in the slope basin and ridge saddle sites estimated from curve fitting of concentration gradients are 2-4 mmol/m**3/yr, and integrated net rates are 20-50 mmol/m**2/yr. Modeled microbial methane production rates are initially 1.5 mmol/m**3/yr in sediments just beneath the sulfate reduction zone but rapidly decrease to rates of <0.1 mmol/m**3/yr at depths >100 mbsf. Integrated net rates of methane production in sediments away from the southern summit of Hydrate Ridge are 25-80 mmol/m**2/yr. Anaerobic methane oxidation is minor or absent in cored sediments away from the summit of southern Hydrate Ridge. Ethane-enriched Structure I gas hydrate solids are buried more rapidly than ethane-depleted dissolved gas in the pore water because of advection from compaction. With subsidence beneath the gas hydrate stability zone, the ethane (mainly of low-temperature thermogenic origin) is released back to the dissolved gas-free gas phases and produces a discontinuous decrease in the C1/C2 vs. depth trend. These ethane fractionation effects may be useful to recognize and estimate levels of gas hydrate occurrence in marine sediments.
Resumo:
A stratigraphy-based chronology for the North Greenland Eemian Ice Drilling (NEEM) ice core has been derived by transferring the annual layer counted Greenland Ice Core Chronology 2005 (GICC05) and its model extension (GICC05modelext) from the NGRIP core to the NEEM core using 787 match points of mainly volcanic origin identified in the electrical conductivity measurement (ECM) and dielectrical profiling (DEP) records. Tephra horizons found in both the NEEM and NGRIP ice cores are used to test the matching based on ECM and DEP and provide five additional horizons used for the timescale transfer. A thinning function reflecting the accumulated strain along the core has been determined using a Dansgaard-Johnsen flow model and an isotope-dependent accumulation rate parameterization. Flow parameters are determined from Monte Carlo analysis constrained by the observed depth-age horizons. In order to construct a chronology for the gas phase, the ice age-gas age difference (Delta age) has been reconstructed using a coupled firn densification-heat diffusion model. Temperature and accumulation inputs to the Delta age model, initially derived from the water isotope proxies, have been adjusted to optimize the fit to timing constraints from d15N of nitrogen and high-resolution methane data during the abrupt onset of Greenland interstadials. The ice and gas chronologies and the corresponding thinning function represent the first chronology for the NEEM core, named GICC05modelext-NEEM-1. Based on both the flow and firn modelling results, the accumulation history for the NEEM site has been reconstructed. Together, the timescale and accumulation reconstruction provide the necessary basis for further analysis of the records from NEEM.
Resumo:
Serpentinization of abyssal peridotites is known to produce extremely reducing conditions as a result of dihydrogen (H2,aq) release upon oxidation of ferrous iron in primary phases to ferric iron in secondary minerals by H2O.We have compiled and evaluated thermodynamic data for Fe-Ni-Co-O-S phases and computed phase relations in fO2,g-fS2,g and aH2,aq-aH2S,aq diagrams for temperatures between 150 and 400°C at 50MPa.We use the relations and compositions of Fe-Ni-Co-O-S phases to trace changes in oxygen and sulfur fugacities during progressive serpentinization and steatitization of peridotites from the Mid-Atlantic Ridge in the 15°20'N Fracture Zone area (Ocean Drilling Program Leg 209). Petrographic observations suggest a systematic change from awaruite- magnetite-pentlandite and heazlewoodite-magnetite-pentlandite assemblages forming in the early stages of serpentinization to millerite-pyrite-polydymite-dominated assemblages in steatized rocks. Awaruite is observed in all brucite-bearing partly serpentinized rocks. Apparently, buffering of silica activities to low values by the presence of brucite facilitates the formation of large amounts of hydrogen, which leads to the formation of awaruite. Associated with the prominent desulfurization of pentlandite, sulfide is removed from the rock during the initial stage of serpentinization. In contrast, steatitization indicates increased silica activities and that highsulfur-fugacity sulfides, such as polydymite and pyrite-vaesite solid solution, form as the reducing capacity of the peridotite is exhausted and H2 activities drop. Under these conditions, sulfides will not desulfurize but precipitate and the sulfur content of the rock increases. The co-evolution of fO2,g-fS2,g in the system follows an isopotential of H2S,aq, indicating that H2S in vent fluids is buffered. In contrast, H2 in vent fluids is not buffered by Fe-Ni-Co-O-S phases, which merely monitor the evolution of H2 activities in the fluids in the course of progressive rock alteration.The co-occurrence of pentlandite- awaruite-magnetite indicates H2,aq activities in the interacting fluids near the stability limit of water. The presence of a hydrogen gas phase would add to the catalyzing capacity of awaruite and would facilitate the abiotic formation of organic compounds.
Resumo:
Concentrations and d34S and d13C values were determined on SO4, HCO3, CO2, and CH4 in interstitial water and gas samples from the uppermost 400 m of sediment on the Blake Outer Ridge. These measurements provide the basis for detailed interpretation of diagenetic processes associated with anaerobic respiration of electrons generated by organic- matter decomposition. The sediments are anaerobic at very shallow depths (<1 m) below the seafloor. Sulfate reduction is confined to the uppermost 15 m of sediment and results in a significant outflux of oxidized carbon from the sediments. At the base of the sulfate reduction zone, upward-diffusing CH4 is being oxidized, apparently in conjunction with SO4 reduction. CH4 generation by CO2 reduction is the most important metabolic process below the 15-m depth. CO2 removal is more rapid than CO2 input over the depth interval from 15 to 100 m, and results in a slight decrease in HCO3 concentration accompanied by a 40 per mil positive shift in d13C. The differences among coexisting CH4, CO2, and HCO3 are consistent with kinetic fractionation between CH4 and dissolved CO2, and equilibrium fractionation between CO2 and HCO3. At depths greater than 100 m, the rate of input of CO2 (d13C = -25 per mil) exceeds by 2 times the rate of removal of CO2 by conversion to CH4 (d13C of -60 to -65 per mil). This results in an increase of dissolved HCO3 concentration while maintaining d13C of HCO3 relatively constant at +10 per mil. Non-steady-state deposition has resulted in significantly higher organic carbon contents and unusually high (70 meq/l) pore-water alkalinities below 150 m. These high alkalinities are believed to be related more to spontaneous decarboxylation reactions than to biological processes. The general decrease in HCO3 concentration with constant d13C over the depth interval of 200 to 400 m probably reflects increased precipitation of authigenic carbonate. Input-output carbon isotope-mass balance calculations, and carbonate system equilibria in conjunction with observed CO2-CH4 ratios in the gas phase, independently suggest that CH4 concentrations on the order of 100 mmol/kg are present in the pore waters of Blake Outer Ridge sediments. This quantity of CH4 is believed to be insufficient to saturate pore waters and stabilize the CH4*6H2O gas hydrate. Results of these calculations are in conflict with the physical recovery of gas hydrate from 238 m, and with the indirect evidence (seismic reflectors, sediment frothing, slightly decreasing salinity and chlorinity with depth, and pressure core barrel observations) of gas-hydrate occurrence in these sediments. Resolution of this apparent conflict would be possible if CH4 generation were restricted to relatively thin (1-10 m) depth intervals, and did not occur uniformly at all depths throughout the sediment column, or if another methanogenic process (e.g., acetate fermentation) were a major contributor of gas.