27 resultados para fracture hematoma
em Publishing Network for Geoscientific
Resumo:
Bottom morphology of the Jan Mayen transform fracture zone and rock chemistry data show that petrological and chemical specific features of igneous rocks can result from higher permeability of the transform fracture zone and deeper penetration of ocean water into the lithosphere in comparison with rift zones of the Kolbeinsey and Mohn's mid-ocean ridges. Age of alkaline magmatism of the Jan Mayen fracture zone is similar to that of rift zones due to palingenesis of metamorphosed and hydrated mantle and crustal rocks.
Resumo:
An analysis of data on the location of hydrothermal fields, seismicity, and satellite altimetry evidences that in mid-ocean ridges with low spreading rate hydrothermal fields tend to be grouped in areas with generally low seismic activity and at intersections of discontinuities and rift zones. Based on this assumption, the Sierra Leone Fracture Zone was studied in 2000 during Cruise 22 of R/V Akademik Nikolaj Strakhov. A study of gabbrodolerite and dolerite showed that sulfide ore minerals in them were formed both by hydrothermal and magmatic processes. An analysis of melt inclusions demonstrated that magmatic complexes formed from a high-temperature (1210-1255°C) low-potassium melt of the N-MORB type. Investigations of fluid inclusions revealed that gabbro and dolerite formed under influence of an active hydrothermal system at temperature 205-226°C. Thus, the Sierra Leone Fracture Zone is considered to be perspective for a discovery of a new hydrothermal field.
Resumo:
Recent investigations of the southern Gulf of California (22°N) on Leg 65 of the Deep Sea Drilling Project (DSDP) allow important comparisons with drilled sections of ocean crust formed at different spreading rates. During Leg 65 the Glomar Challenger drilled seven basement holes at sites forming a transect across the ridge axis near the Tamayo Fracture Zone. An additional site was drilled on the fracture zone itself, where a small magnetic "diapir" was located. Together with the material from Site 474 (drilled during Leg 64) the cores recovered at these sites are representative of the upper basaltic and sedimentary crust formed since the initial opening of the Gulf. The pattern of magmatic accretion at the ridge axis is conditioned by the moderate to high rate of spreading (~6 cm/y.) and comparatively high sedimentation rates that now characterize the Gulf of California. In terms of spreading rate, this region is intermediate between the "superfast" East Pacific Rise axis to the south (up to 17 cm/y.) and the slow-spreading Mid-Atlantic Ridge (2-4 cm/y.) both of which have been extensively studied by dredging and drilling.
Resumo:
Geological-geophysical data obtained during Cruises 7, 11, and 12 of R/V Akademic Nikolay Strakhov (1989-1991) within the international project EQUARIDGE in the Strakhov Fracture Zone region (4°N) are presented. The trough of the fracture is interpreted as an open extension joint, a graben produced by stretching along the axis of the Mid-Atlantic Ridge. Bedrock studies showed that typical mid-ocean tholeiitic basalts occur within the narrow (60 nm wide) axial rift zone, whereas igneous rocks not typical for the ocean were found on the eastern and western flank plateaus. This allows to suppose that a reworked relict continental-type basement of pre-Upper Jurassic age possibly exists beneath the flank plateaus, within the segment under discussion. The above data correspond to the hypothesis of E. Bonatti about nonspreading nature of the basement of Mid-Atlantic Ridge within the equatorial segment and the Strakhov Fracture Zone.
Resumo:
During the "Atlantic Expedition" in1965 (IQSY) a comprehensive bathymetric survey and a few hydrographic stations were made by R.V. "Meteor" in the equatorial region of the Mid-Atlantic Ridge. The survey results are shown in a bythymetric chart covering the western parts of the Romanche- and Chain Fracture Zones. West of the original Romanche Trench another deep trench with a medium depth of 6000 m was discovered. The maximum sounding obtained was 7028 m. Both trenches apparently belong to the same fracture zone, but are distinctly separated from each other. The estern boundary of the trench against the Brasil Basin is formed by a sill rising to a depth of about 4400 m. The serial hydrographic observations give some indications of the flow of the cold Westatlantic deep water in the fracture zone area and its influence on the hydrographic conditions in the East-Atlantic Basin. The upper limit of the nearly homogenious Westatlantic bottom water with an Antarctic components lies about 4400 m. The water mass entering the system of trenches of the Romanche Fracture Zone over the western sill originates from the lower part of the discontinuity layer lying above the bottom water. Potential temperatures of 0.6°C were the lowest observed by "Meteor" in the western trench. There seems to be a remarkable tongue of relatively high salinity and a minimum of oxygen in the deep water of this trench. At present we can only speculate upon the origin of this highly saline deep water tongue underneath the eastward moving relatively thin layer of less saline Westatlantic deep water. In the range of the sill separating both trenches a lee wave is indicated by the distribution of salinity and oxygen, which implies a vertical transport of water masses. Caused by this transport it is assumed that relatively cold water may be lifted temporarily to a depth, where it can pass the northbounding ridge, thus getting directly into the Sierra Leone Basin. In the original Romanche Trench the cold Westatlantic deep water seems to fill the whole trough, but its extension remains limited to the trench itself. The water masses found east of the sill separating the trench from the East-Atlantic Basin originate from the lower part of the discontinuity layer. With potential temperatures of about 1.3°C they are much warmer than those observed in the Romanche Trench bottom water.