3 resultados para floodplains
em Publishing Network for Geoscientific
Resumo:
The coastal deposits of Bonaire, Leeward Antilles, are among the most studied archives for extreme-wave events (EWEs) in the Caribbean. Here we present more than 400 electron spin resonance (ESR) and radiocarbon data on coarse-clast deposits from Bonaire's eastern and western coasts. The chronological data are compared to the occurrence and age of fine-grained extreme-wave deposits detected in lagoons and floodplains. Both approaches are aimed at the identification of EWEs, the differentiation between extraordinary storms and tsunamis, improving reconstructions of the coastal evolution, and establishing a geochronological framework for the events. Although the combination of different methods and archives contributes to a better understanding of the interplay of coastal and archive-related processes, insufficient separation, superimposition or burying of coarse-clast deposits and restricted dating accuracy limit the use of both fine-grained and coarse-clast geoarchives to unravel decadal- to centennial-scale events. At several locations, distinct landforms are attributed to different coastal flooding events interpreted to be of tsunamigenic origin. Coastal landforms on the western coast have significantly been influenced by (sub)-recent hurricanes, indicating that formation of the coarse-clast deposits on the eastern coast is likely to be related to past events of higher energy.
Resumo:
The Lena River Delta, which is the largest delta in the Arctic, extends over an area of 32 000 km**2 and likely holds more than half of the entire soil organic carbon (SOC) mass stored in the seven major deltas in the northern permafrost regions. The geomorphic units of the Lena River Delta which were formed by true deltaic sedimentation processes are a Holocene river terrace and the active floodplains. Their mean SOC stocks for the upper 1 m of soils were estimated at 29 kg/m**2 ± 10 kg/m**2 and at 14 kg/m**2 ± 7 kg/m**2, respectively. For the depth of 1 m, the total SOC pool of the Holocene river terrace was estimated at 121 Tg ± 43 Tg, and the SOC pool of the active floodplains was estimated at 120 Tg ± 66 Tg. The mass of SOC stored within the observed seasonally thawed active layer was estimated at about 127 Tg assuming an average maximum active layer depth of 50 cm. The SOC mass which is stored in the perennially frozen ground at the increment 50-100 cm soil depth, which is currently excluded from intense biogeochemical exchange with the atmosphere, was estimated at 113 Tg. The mean nitrogen (N) stocks for the upper 1 m of soils were estimated at 1.2 kg/m**2 ± 0.4 kg/m**2 for the Holocene river terrace and at 0.9 kg/m**2 ± 0.4 kg/m**2 for the active floodplain levels, respectively. For the depth of 1 m, the total N pool of the river terrace was estimated at 4.8 Tg ± 1.5 Tg, and the total N pool of the floodplains was estimated at 7.7 Tg ± 3.6 Tg. Considering the projections for deepening of the seasonally thawed active layer up to 120 cm in the Lena River Delta region within the 21st century, these large carbon and nitrogen stocks could become increasingly available for decomposition and mineralization processes.
Resumo:
The high-resolution marine isotope climate record indicates pronounced global cooling during the Langhian (16-13.8 Ma), beginning with the warm middle Miocene climatic optimum and ending with significant Antarctic ice sheet expansion and the transition to "icehouse" conditions. Terrestrial paleoclimate data from this interval is sparse and sometimes conflicting. In particular, there are gaps in the terrestrial record in the Pacific Northwest during the late Langhian and early Serravallian between about 14.5 and 12.5 Ma. New terrestrial paleoclimate data from this time and region could reconcile these conflicting records. Paleosols are particularly useful for reconstructing paleoenvironment because the rate and style of pedogenesis is primarily a function of surface environmental conditions; however, complete and well-preserved paleosols are uncommon. Most soils form in erosive environments that are not preserved, or in environments such as floodplains that accumulate in small increments; the resulting cumulic soils are usually thin, weakly developed, and subject to diagenetic overprinting from subsequent soils. The paleosol at Cricket Flat in northeastern Oregon is an unusually complete and well-preserved paleosol from a middle Miocene volcanic sequence in the Powder River Volcanic Field. An olivine basalt flow buried the paleosol at approximately 13.8 ± 0.6 Ma, based on three 40Ar/39Ar dates on the basalt. We described the Cricket Flat paleosol and used its physical and chemical profile and micromorphology to assess pedogenesis. The Cricket Flat paleosol is an Ultisol-like paleosol, chemically consistent with a high degree of weathering. Temperature and rainfall proxies suggest that Cricket Flat received 1120 ± 180 mm precipitation y-1 and experienced a mean annual temperature of 14.5 ± 2.1 °C during the formation of the paleosol, significantly warmer and wetter than today. This suggests slower cooling after the middle Miocene climatic optimum than is seen in the existing paleosol record.