18 resultados para fire tolerant species
em Publishing Network for Geoscientific
Resumo:
During Leg 123, abundant and well-preserved Neocomian radiolarians were recovered at Site 765 (Argo Abyssal Plain) and Site 766 (lower Exmouth Plateau). The assemblages are characterized by a scarcity or absence of Tethyan taxa. The Berriasian-early Aptian radiolarian record recovered at Site 765 is unique in its density of well-preserved samples and in its faunal contents. Remarkable contrasts exist between radiolarian assemblages extracted from claystones of Site 765 and reexamined DSDP Site 261, and faunas recovered from radiolarian sand layers of Site 765. Clay faunas are unusual in their low diversity of apparently ecologically tolerant species, whereas sand faunas are dominated by non-Tethyan species that have never been reported before. Comparisons with Sites 766 and 261, as well as sedimentological observations, lead to the conclusion that this faunal contrast results from a difference in provenance, rather than from hydraulic sorting. Biostratigraphic dating proved difficult principally because of the paucity or even absence of (Tethyan) species used in published zonations. In addition, published zonations are contradictory and do not reflect total ranges of species. Radiolarian assemblages recovered from claystones at Sites 765 and 261 in the Argo Basin reflect restricted oceanic conditions for the latest Jurassic to Barremian time period. Neither the sedimentary facies nor the faunal associations bear any resemblance to sediment and radiolarian facies observed in typical Tethyan sequences. I conclude that the Argo Basin was paleoceanographically separated from Tethys during the Late Jurassic and part of the Early Cretaceous by its position at a higher paleolatitude and by enclosing landmasses, i.e., northeastern India and the Shillong Block, which were adjacent to the northwestern Australian margin before the opening. Assemblages recovered from radiolarian sand layers are dominated by non-Tethyan species that are interpreted as circumantarctic. Their sudden appearance in the late Berriasian/early Valanginian pre-dates the oceanization of the Indo-Australian break-up (Ml 1, late Valanginian) by about 5 m.y., but coincides with a sharp increase in margin-derived pelagic turbidites. The Indo-Australian rift zone and its adjacent margins probably were submerged deeply enough to allow an intermittent "spillover" of circumantarctic cold water into the Argo Basin, creating increased bottom current activity. Circumantarctic cold-water radiolarians transported into the Argo Basin upwelled along the margin and died en masse. Concomitant winnowing by bottom currents led to their accumulation in distinct radiolarite layers. High rates of faunal change and the sharp increase of bottom current activity are thought to be synchronous with the two pronounced late Berriasian-early Valanginian lowstands in sea level. Hypothetically, both phenomena might have been caused by a glaciation on the Antarctic-Australian continent, which was for the first time isolated from the rest of Gondwana by oceanic seaways as a result of Jurassic and Early Cretaceous seafloor spreading. The absence of typical Tethyan radiolarian species during the late Valanginian to late Hauterivian period is interpreted as reflecting a time of strong influx of circumantarctic cold water following oceanization (Mil) and rapid spreading between southeast India and western Australia. The reappearance and gradual increase in abundance and diversity of Tethyan forms along with the still dominant circumantarctic species are thought to result from overall more equitable climatic conditions during the Barremian and early Aptian and may have resulted from the establishment of an oceanic connection with the Tethys Ocean during the early Aptian.
Resumo:
Studies combining sedimentological and biological evidence to reconstruct Holocene climate beyond the major changes, and especially seasonality, are rare in Europe, and are nearly completely absent in Germany. The present study tries to reconstruct changes of seasonality from evidence of annual algal successions within the framework of well-established pollen zonation and 14C-AMS dates from terrestrial plants. Laminated Holocene sediments in Lake Jues (10°20.70' E, 51°39.30' N, 241 m a.s.l.), located at the SW margin of the Harz Mountains, central Germany, were studied for sediment characteristics, pollen, diatoms and coccal green algae. An age model is based on 21 calibrated AMS radiocarbon dates from terrestrial plants. The sedimentary record covers the entire Holocene period. Trophic status and circulation/stagnation patterns of the lake were inferred from algal assemblages, the subannual structure of varves and the physico-chemical properties of the sediment. During the Holocene, mixing conditions alternated between di-, oligo- and meromictic depending on length and variability of spring and fall periods, and the stability of winter and summer weather. The trophic state was controlled by nutrient input, circulation patterns and the temperature-dependent rates of organic production and mineralization. Climate shifts, mainly in phase with those recorded from other European regions, are inferred from changing limnological conditions and terrestrial vegetation. Significant changes occurred at 11,600 cal. yr. BP (Preboreal warming), between 10,600 and 10,100 cal. yr. BP (Boreal cooling), and between 8,400 and 4,550 cal. yr. BP (warm and dry interval of the Atlantic). Since 4,550 cal. yr. BP the climate became gradually cooler, wetter and more oceanic. This trend was interrupted by warmer and dryer phases between 3,440 and 2,850 cal. yr. BP and, likely, between 2,500 and 2,250 cal. yr. BP.
Resumo:
To reconstruct paleoceanographic changes in the eastern Mediterranean during the last 330,000 years, we studied benthic foraminifera in a piston core from the Ionian Sea. The fauna exhibits large fluctuations in foraminiferal number, diversity, and species composition. Interglacials are characterized by low foraminiferal number and diversity indicating oligotrophic conditions. Directly below or above interglacial sapropels, increased numbers of low-oxygen-tolerant species indicate a strong reduction of deep water circulation. Glacials are characterized by increased foraminiferal number and diversity and faunas that are dominated by shallow infaunal species indicating mesotrophic conditions. Around glacial sapropel S6 very high foraminiferal numbers and the dominance of shallow and deep infaunal species suggest enhanced organic matter fluxes. These faunal results provide information about changes in the African and North Atlantic climate systems (monsoon and westerlies) controlling the humidity and wind stress in the Mediterranean region.
Resumo:
Ecosystems at high northern latitudes are subject to strong climate change. Soil processes, such as carbon and nutrient cycles, which determine the functioning of these ecosystems, are controlled by soil fauna. Thus assessing the responses of soil fauna communities to environmental change will improve the predictability of the climate change impacts on ecosystem functioning. For this purpose, trait assessment is a promising method compared to the traditional taxonomic approach, but it has not been applied earlier. In this study the response of a sub-arctic soil Collembola community to long-term (16 years) climate manipulation by open top chambers was assessed. The drought-susceptible Collembola community responded strongly to the climate manipulation, which substantially reduced soil moisture and slightly increased soil temperature. The total density of Collembola decreased by 51% and the average number of species was reduced from 14 to 12. Although community assessment showed species-specific responses, taxonomically based community indices, species diversity and evenness, were not affected. However, morphological and ecological trait assessments were more sensitive in revealing community responses. Drought-tolerant, larger-sized, epiedaphic species survived better under the climate manipulation than their counterparts, the meso-hydrophilic, smaller-sized and euedaphic species. Moreover it also explained the significant responses shown by four taxa. This study shows that trait analysis can both reveal responses in a soil fauna community to climate change and improve the understanding of the mechanisms behind them.
Resumo:
During ODP Leg 123, abundant and well-preserved Neocomian radiolarians were recovered at Site 765 (Argo Abyssal Plain) and Site 766 (lower Exmouth Plateau). Assemblages are characterized by the numerical dominance of a small number of non-tethyan forms and by the scarcity of tethyan taxa. Remarkable contrasts exist between radiolarian assemblages extracted from claystones of Site 765 and reexamined DSDP Site 261, and faunas recovered from radiolarian sand layers, only found at Site 765. Clay faunas are unusual in their low diversity of apparently ecologically tolerant (or solution resistant?), ubiquist species, whereas sand faunas are dominated by non-tethyan taxa. Comparisons with Sites 766 and 261, as well as sedimentological observations, lead to the conclusion that this faunal contrast resulted from a difference in provenance, rather than from hydraulic sorting or selective dissolution. The ranges of 27 tethyan taxa from Site 765 were compared to the tethyan radiolarian zonation by Jud ( 1992 ) by means of the Unitary Associations Method. This calculation allows to directly date the Site 765 assemblages and to estimate the amount of truncation of ranges for tethyan taxa. Over 70% of the already few tethyan species of Site 765, have truncated ranges during the Valanginian-Hauterivian. Radiolarian assemblages recovered from claystones at Sites 765 and 261 in the Argo Basin apparently reflect restricted oceanic conditions during the latest Jurassic-Barremian. Neither sedimentary facies nor faunal associations bear any resemblance to what we know from typical tethyan sequences. We conclude that the Argo Basin was paleoceanographically separated from the Tethys during the Late Jurassic and part of the Early Cretaceous by its position at higher paleolatitudes and/or by enclosing land masses. Assemblages recovered from radiolarian sand layers are dominated by non-tethyan species that are interpreted as circumantarctic. Their first appearance in the late Berriasian-early Valanginian predates the oceanization of the Indo-Australian breakup (M11, late Valanginian), but coincides with a sharp increase in margin-derived pelagic turbidites. The Indo-Australian rift zone and the adjacent margins must have been submerged deeply enough to allow an intermittent influx of circumantarctic cold water into the Argo Basin, creating increased bottom current activity. Cold-water radiolarians carried into the Argo Basin upwelled along the margin, died, and accumulated in radiolarite layers due to winnowing by bottom currents. High rates of faunal change and the sharp increase of bottom current activity are thought to be synchronous with possible pronounced late Berriasian-early Valanginian lowstands in sea level. Hypothetically, both phenomena might have been caused by a tendency to glaciation on the Antarctic-Australian continent, which was for the first time isolated from the rest of Gondwana by oceanic seaways as a result of Jurassic-Early Cretaceous sea-floor spreading. The absence of most typical tethyan radiolarian species during the Valanginian-Hauterivian is interpreted as reflecting a time of strong influx of circumantarctic cold water following oceanization (M 11) and rapid spreading between Southeast India and West Australia. The reappearance and gradual abundance/diversity increase of tethyan taxa, along with the still dominant circumantarctic species are thought to result from overall more equitable climatic conditions during the Barremian-early Aptian and from the establishment of an oceanic connection with the Tethys Ocean during the early Aptian.
Resumo:
We studied the effects of changed quality of inflow water of aquaculture ponds on three aquatic communities, phytoplankton, zooplankton and zoobenthos, during two seasons of rearing common carp (Cyprinus carpio). The new water source coming from a deep tube well was markedly different in water chemistry from the surface water sources previously used to maintain the investigated fish ponds. Ponds supplied by the tube well water were characterized by lower oxygen and water hardness, and higher total ammonia and conductivity reaching subsaline conditions. Multivariate analysis (co-inertia) revealed that all investigated groups, except Mollusca (zoobenthos), decreased in species richness, abundance and biomass due to changed water chemistry, but differed in the level of susceptibility to stressors. Assemblages of Rotifera and Cladocera were the most affected showing a sharp decline in density and number of species since 29 out of 44 species disappeared from the ponds. The abundance of Copepoda (Cyclopoida) was relatively high although significantly lower in new environmental conditions (P<0.05), with adults being more tolerant to changed inflow water than larvae. Phytoplankton, except Bacillariophyta, had a highest potential to replace previous species with newcomers more adapted to changed inflow water, providing 36 immigrant species while 49 became extinct. Although mainly influenced by fish predation, Chironomidae (zoobenthos) were undoubtedly affected by changed water chemistry, decreasing from 11 to only 3 species. These results suggest that this pattern was a result of the shift from freshwater to subsaline conditions.
Resumo:
We investigated the effect of suspended sediments on the vital rates of the copepods Calanus finmarchicus, Pseudocalanus sp. and Metridia longa in a Greenland sub-Arctic fjord. The fjord had a gradient of suspended particulate matter (SPM) with high concentrations (>50 mg/L) in the inner fjord due to glacial melt water runoff. Laboratory experiments showed that when feeding on the diatom Thalassiosira weissflogii specific ingestion rates were low at high concentrations of suspended sediment for C. finmarchicus (>20 mg/L) and Pseudocalanus sp. (>50 mg/L), while no effect was found for M. longa. For C. finmarchicus, a relatively constant fecal pellet production (FPP) and fecal pellet volume suggested ingestion of sediment, which probably led to reduction in egg production rates (EPRs) at high sediment concentrations. For Pseudocalanus sp., FPP decreased with increasing sediment concentrations, while no effect was observed on EPR. No significant difference was observed in FPP for M. longa feeding on the diatom T. weissflogii compared to the ciliate Strombidium sulcatum. The study shows that high sediment concentrations influence the capability of carbon turnover in C. finmarchicus and Pseudocalanus sp., while M. longa appears to be more tolerant to high sediment loads. Therefore, high concentrations of SPM could potentially influence the species composition of glacially influenced fjords.
Resumo:
Although copepods have been considered tolerant against the direct influence of the ocean acidification (OA) projected for the end of the century, some recent studies have challenged this view. Here, we have examined the direct impact of short-term exposure to a pCO2/pH level relevant for the year 2100 (pHNBS, control: 8.18, low pH: 7.78), on the physiological performance of two representative marine copepods: the calanoid Acartia grani and the cyclopoid Oithona davisae. Adults of both species, from laboratory cultures, were preconditioned for four consecutive days in algal suspensions (Akashiwo sanguinea) prepared with filtered sea water pre-adjusted to the targeted pH values via CO2 bubbling. We measured the feeding and respiratory activity and reproductive output of those pre-conditioned females. The largely unaffected fatty acid composition of the prey offered between OA treatments and controls supports the absence in the study of indirect OA effects (i.e. changes of food nutritional quality). Our results show no direct effect of acidification on the vital rates examined in either copepod species. Our findings are compared with results from previous short- and long-term manipulative experiments on other copepod species.
Resumo:
The physiological response to individual and combined stressors of elevated temperature and pCO2 were measured over a 24-day period in four Pacific corals and their respective symbionts (Acropora millepora/Symbiodinium C21a, Pocillopora damicornis/Symbiodinium C1c-d-t, Montipora monasteriata/Symbiodinium C15, and Turbinaria reniformis/Symbiodinium trenchii). Multivariate analyses indicated that elevated temperature played a greater role in altering physiological response, with the greatest degree of change occurring within M. monasteriata and T. reniformis. Algal cellular volume, protein, and lipid content all increased for M. monasteriata. Likewise, S. trenchii volume and protein content in T. reniformis also increased with temperature. Despite decreases in maximal photochemical efficiency, few changes in biochemical composition (i.e. lipids, proteins, and carbohydrates) or cellular volume occurred at high temperature in the two thermally sensitive symbionts C21a and C1c-d-t. Intracellular carbonic anhydrase transcript abundance increased with temperature in A. millepora but not in P. damicornis, possibly reflecting differences in host mitigated carbon supply during thermal stress. Importantly, our results show that the host and symbiont response to climate change differs considerably across species and that greater physiological plasticity in response to elevated temperature may be an important strategy distinguishing thermally tolerant vs. thermally sensitive species.
Resumo:
In situ calcification measurements tested the hypothesis that corals from environments (Florida Bay, USA) that naturally experience large swings in pCO2 and pH will be tolerant or less sensitive to ocean acidification than species from laboratory experiments with less variable carbonate chemistry. The pCO2 in Florida Bay varies from summer to winter by several hundred ppm roughly comparable to the increase predicted by the end of the century. Rates of net photosynthesis and calcification of two stress-tolerant coral species, Siderastrea radians and Solenastrea hyades, were measured under the prevailing ambient chemical conditions and under conditions amended to simulate a pH drop of 0.1-0.2 units at bimonthly intervals over a 2-yr period. Net photosynthesis was not changed by the elevation in pCO2 and drop in pH; however, calcification declined by 52 and 50 % per unit decrease in saturation state, respectively. These results indicate that the calcification rates of S. radians and S. hyades are just as sensitive to a reduction in saturation state as coral species that have been previously studied. In other words, stress tolerance to temperature and salinity extremes as well as regular exposure to large swings in pCO2 and pH did not make them any less sensitive to ocean acidification. These two species likely survive in Florida Bay in part because they devote proportionately less energy to calcification than most other species and the average saturation state is elevated relative to that of nearby offshore water due to high rates of primary production by seagrasses.