16 resultados para fine root lenght density
em Publishing Network for Geoscientific
Resumo:
This data set describes different vegetation, soil and plant functional traits (PFTs) of 15 plant species in 30 sampling plots of an agricultural landscape in the Haean-myun catchment in South Korea. We divided the data set into two main tables, the first one includes the PFTs data of the 15 studied plant species, and the second one includes the soil and vegetation characteristics of the 30 sampling plots. For a total of 150 individuals, we measures the maximum plant height (cm) and leaf size (cm**2), which means the leaf surface area for the aboveground compartment of each individual. For the belowground compartment, we measured root horizontal width, which is the maximum horizontal spread of the root, rooting length, which is the maximum rooting depth, root diameter, which is the average root diameter of a the whole root, specific root length (SRL), which is the root length divided by the root dry mass, and root/shoot ratio, which is the root dry mass divided by the shoot dry mass. At each of the 30 studied plots, we estimated three different variables describing the vegetation characteristics: vegetation cover (i.e. the percentage of ground covered by vegetation), species richness (i.e. the number of observed species) and root density (estimated using a 30 cm x 30 cm metallic frame divided into nine 10 cm x 10 cm grids placed on the soil profile), as we calculated the total number of roots that appear in each of the nine grids and then we converted it into percentage based on the root count, following. Moreover, in each plot we estimated six different soil variables: Bulk density (g/cm**3), clay % (i.e. percentage of clay), silt % (i.e. percentage of silt), soil aggregate stability, using mean weight diameter (MWD), penetration resistance (kg/cm**2), using pocket penetrometer and soil shear vane strength (kPa).
Resumo:
Bulk chemical fine-grained sediment compositions from southern Victoria Land glacimarine sediments provide significant constraints on the reconstruction of sediment provenance models in the McMurdo Sound during Late Cenozoic time. High-resolution (~ 1 ka) geochemical data were obtained with a non-destructive AVAATECH XRF Core Scanner (XRF-CS) on the 1285 m long ANDRILL McMurdo Ice Shelf Project (MIS) sediment core AND-1B. This data set is complemented by high-precision chemical analyses (XRF and ICP-OES) on discrete samples. Statistical analyses reveal three geochemical facies which are interpreted to represent the following sources for the sediments recovered in the AND-1B core: 1) local McMurdo Volcanic Group (MVG) rocks, 2) Transantarctic Mountain rocks west of Ross Island (W TAM), and 3) Transantarctic Mountain rocks from more southerly areas (S TAM). Data indicate in combination with other sediment facies analyses (McKay et al., 2009, doi:10.1130/B26540.1) and provenance scenarios (Talarico and Sandroni, 2009, doi:10.1016/j.gloplacha.2009.04.007) that diamictites at the drill site are largely dominated by local sources (MVG) and are interpreted to indicate cold polar conditions with dry-based ice. MVG is interpreted to indicate cold polar condition with dry-based ice. A mixture of MVG and W TAM is interpreted to represent polar conditions and the S TAM facies is interpreted to represent open-marine conditions. Down-core variations in geochemical facies in the AND-1B core are interpreted to represent five major paleoclimate phases over the past 14 Ma. Cold polar conditions with major MVG influence occur below 1045 mbsf and above 120 mbsf. A section of warmer climate conditions with extensive peaks of S TAM influence characterizes the rest of the core, which is interrupted by a section from 525 to 855 mbsf of alternating influences of MVG and W TAM.
Resumo:
The physical properties of sediments beneath an upwelling area in the southern part of the Atlantic Ocean (ODP Hole 704A) were investigated. Highly significant correlations characterize the relationship of carbonate content to bulk density (R = 0.85), carbonate content to porosity (R = 0.84), and carbonate content to impedance (R = 0.84). No relationship exists between carbonate content and compressional-wave velocity (R = 0.24), indicating that amplitude variations in impedance are primarily controlled by variations in bulk density, which, in turn, are controlled by climatically driven biogenic opal and carbonate deposition. In general, maxima in impedance correspond to maxima in carbonate content (minima in opal content). The impedance record exhibits its most drastic change at about 2.4 Ma, marking dramatic increases in the average content of biogenic opal and the beginning of large-amplitude fluctuations. Between 0.7 and 0.4 Ma carbonate content, bulk density, and grain density decrease while opal content drastically increases. Similar changes have been observed in sediments beneath an upwelling cell off northwest Africa, indicating an oceanwide enhancement in upwelling or in the calcite corrosiveness of bottom water that appears to be isochronous.
Resumo:
The terrigenous mineral fraction of sediments recovered by drilling during Ocean Drilling Program Leg 167 at Sites 1018 and 1020 is used to evaluate changes in the source and transport of fine-grained terrigenous sediment and its relation to regional climates and the paleoceanographic evolution of the California Current system during the late Pleistocene. Preliminary time scales developed by correlation of oxygen isotope stratigraphies with the global SPECMAP record show average linear sedimentation rates in excess of 100 m/m.y., which provide an opportunity for high-resolution studies of terrigenous flux, grain size, and mineralogy. The mass flux of terrigenous minerals at Site 1018 varies from 5 to 30 g/(cm**2 x k.y.) and displays a general trend toward increased flux during glacials. The terrigenous record at Site 1020 shows a similar pattern of increased glacial input, but overall accumulation rates are significantly lower. Spectral analysis demonstrates that most of this variability is concentrated in frequency bands related to orbital cycles of eccentricity, tilt, and precession. Detailed grain-size analysis performed on the isolated terrigenous mineral fraction shows that sediments from Site 1018 are associated with higher energy transport and depositional regimes than those found at Site 1020. Grain-size data are remarkably uniform throughout the last 500 k.y., with no discernible difference observed between glacial and interglacial size distributions within each site. X-ray diffraction analysis of the <2-µm clay component suggests that the deposition of minerals found at Site 1020 is consistent with transport from a southern source during intervals of increased terrigenous input.
Resumo:
The wet bulk density is one of the most important parameters of the physical and geological properties of marine sediments. The density is connected directly with sedimentation history and a few sedirnent properties. Knowledge of the fine scale density-depth structure is the base for many model calculations, for both sedimentological and palaeoclimatic research. A density measurement system was designed and built at the Alfred Wegener Institute in Bremerhaven for measuring the wet buk density of sediment cores with high resolution in a non-destructive way. The density is deterrnined by measuring the absorption of Gamma-rays in the sediment. This principle has been used since the 50's in materials research and in the geosciences. In the present case, Cs137 is used as the radioactive source and the intensity is measured by a detector system (scintillator and photomultiplier). Density values are obtainable in both longitudinal core sections and planar cross-sections (the latter are a function of the axial rotation angle). Special studies on inhomogenity can be applied with core rotation. Detection of ice rafted debris (IRD) is made possible with this option. The processes that run the density measurement system are computer controlled. Besides the absorption measurement the core diameter at every measurement point is determined with a potentiometric system. The data values taken are stored on a personal computer. Before starting routine measurements on the sediment cores, a few experiments conceming the statistical aspects of the gamma-ray signal and its accuracy were carried out. These experiments led to such things as the optimum operational parameters. A high spatial resolution in the mm-range is possible with the 4mm-thin gamma-ray measurements. Within five seconds the wet bulk density can be deterrnined with an absolute accuracy of 1%. A comparison between data measured with the new system and conventional measurements on core samples after core splitting shows an agreement within +I- 5% for most of the values. For this thesis, density determinations were carried out on ten sediment cores. A few sediment characteristics are obtainable from using just the standard measurement results without core rotation. In addition to differentes and steps in the absolute density range, variations in the "frequency" of the density-depth structure can be detected due to the close spatial measurement interval and high resolution. Examples from measurements with small (9°) and great (90°) angle increments show that abrupt and smooth transitional changes of sedirnent layers as well as ice rafted debris of several dimensions can be detected and distiflguished clearly. After the presentation of the wet bulk density results, a comparison with data from other investigations was made. Measurements of the electrical resistivity correlated very well with the density data because both parameters are closely related to the porosity of the sedirnent. Additionally, results from measurements of the magnetic susceptibility and from ultra-sonic wave velocity investigations were considered for a integrative interpretation. The correlation of these both parameters and wet bulk density data is strongly dependent on the local (environmental) conditions. Finally, the densities were compared with recordings from sediment-echographic soundings and an X-ray computer tomography analysis. The individual results of all investigations were then finally combined into an accurate picture of the core. Problems of ambiguity, which exist when just one Parameter is determined alone, can be reduced more or less according to the number of parameters and sedimentary characteristics measured. The important role of the density data among other parameters of such an integrated interpretation is evident. Evidence of this role include the high resolution of the measurement, the excellent accuracy and the key position within methods and parameters concerning marine sediments.