395 resultados para extrudate swell
em Publishing Network for Geoscientific
Resumo:
The hydraulic piston coring device (HPC-15) allows recovery of deep ocean sediments with minimal disturbance. The device was used during Leg 72 of the Deep Sea Drilling Project (DSDP) aboard the Glomar Challenger. Core samples were recovered from bore holes in the Rio Grande Rise in the southwest Atlantic Ocean. Relatively undisturbed sediment cores were obtained from Holes 515A, 516, 517, and 518. The results of shipboard physical property measurements and on-shore geotechnical laboratory tests on these cores are presented in this chapter. A limited number of 0.3 m cores were obtained and used in a series of geotechnical tests, including one-dimensional consolidation, direct shear, Atterburg limit, particle size analysis, and specific gravity tests. Throughout the testing program, attention was focused on assessment of sample disturbance associated with the HPC-15 coring device. The HPC-15 device limits sample disturbance reasonably well in terrigenous muds (clays). However, sample disturbance associated with coring calcareous sediments (nannofossil-foraminifer oozes) is severe. The noncohesive, granular behavior of the calcareous sediments is vulnerable to severe disturbance, because of the design of the sampling head on the device at the time of Leg 72. A number of modifications to the sampling head design are recommended and discussed in this chapter. The modifications will improve sample quality for testing purposes and provide longer unbroken core samples by reducing friction between the sediment column and the sampling tool.
Resumo:
During ODP Leg 107, two holes were drilled in the basement of Vavilov Basin, a central oceanic area of the Tyrrhenian sea. Hole 655B is located near the Gortani ridge in off-axis position at the western rim of the basin; Hole 651A is located on a basement swell at the axis of the basin. This paper deals with mineral chemistry, major and trace element geochemistry, and petrogenesis of the basalts recovered in the two holes. The mineralogy of the basalts is broadly homogeneous, but all of them have suffered important seawater alteration. Their major-element compositions are similar to both normal-mid-ocean-ridge-basalts (N-MORB) and back-arc-basalts (BAB) except for Na2O contents (BAB-like), and K2O which is somewhat enriched in upper unit of Hole 651 A. Their affinity with N-MORB and BAB is confirmed by using immobile trace elements such as Zr, Y, and Nb. However, basalts from the two sites present contrasting geochemical characteristics on spidergrams using incompatible elements. Hole 655B basalts are homogeneous enriched tholeiites, similar to those from DSDP Hole 373 (located on the opposite side of the basin near the eastern rim), and show affinities with enriched MORB (E-MORB). At Hole 651 A, the two basalt units are chemically distinct. One sample recovered in lower unit is rather similar to those from Hole 655B, but basalts from upper unit display calc-alkaline characteristic evidenced by the increase of light-ion-lithophile-element (LILE)/high-field-strength-element (HFSE) ratio, and appearance of a negative Nb-anomaly, making them comparable with orogenic lavas from the adjacent Eolian arc. The observed chemical compositions of the basalts are consistent with a derivation of the magmas from a N-MORB type source progressively contaminated by LILE-enriched fluids released from dehydration of the bordering subducted plate. Implications for evolution of the Tyrrhenian basin are tentatively proposed taking into consideration geochemical and chronological relationships between basalts from Leg 107 Holes 655B and 651 A, together with data from Leg 42 Site 373 and Vavilov Seamount. These data illustrate back-arc spreading in ensialic basin closely associated with the maturation of the adjacent subduction, followed by the growth of late off-axis central volcano, whereas the active subduction retreats southeastward.