8 resultados para extraction and transesterification methods

em Publishing Network for Geoscientific


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Magnetic iron minerals are widespread and indicative sediment constituents in estuarine, coastal and shelf systems. We combine environmental magnetic, sedimentological and numerical methods to identify magnetite-enriched placer-like zones in a complex coastal system and delineate their formation mechanisms. Magnetic susceptibility and remanence measurements on 245 surficial sediment samples collected in and around Tauranga Harbour, the largest barrier-enclosed tidal estuary of New Zealand, reveal several discrete enrichment zones controlled by local hydrodynamic conditions. Active magnetite enrichment takes place in tidal channels, which feed into two coast-parallel nearshore magnetite-enriched belts centered at water depths of 6-10 m and 10-20 m. A close correlation between magnetite content and magnetic grain size was found, where higher susceptibility values are associated within coarser magnetic crystal sizes. Two key mechanisms for magnetite enrichment are identified. First, tide-induced residual currents primarily enable magnetite enrichment within the estuarine channel network. A coast-parallel, fine sand magnetite enrichment belt in water depths of less than 10 m along the barrier island has a strong decrease in magnetite content away from the southern tidal inlet and is apparently related to active coast-parallel transport combined with mobilizing surf zone processes. A second, less pronounced, but more uniform magnetite enrichment belt at 10-20 m water depth is composed of non-mobile, medium-coarse-grained relict sands, which have been reworked during post-glacial sea level transgression. We demonstrate the potential of magnetic methods to reveal and differentiate coastal magnetite enrichment patterns and investigate their formative mechanisms.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Two gravity cores retrieved off NW Africa at the border of arid and subtropical environments (GeoB 13602-1 and GeoB 13601-4) were analyzed to extract records of Late Quaternary climate change and sediment export. We apply End Member (EM) unmixing to 350 acquisition curves of isothermal remanent magnetization (IRM). Our approach enables to discriminate rock magnetic signatures of aeolian and fluvial material, to determine biomineralization and reductive diagenesis. Based on the occurrence of pedogenically formed magnetic minerals in the fluvial and aeolian EMs, we can infer that goethite formed in favor to hematite in more humid climate zones. The diagenetic EM dominates in the lower parts of the cores and within a thin near-surface layer probably representing the modern Fe**2+/Fe**3+ redox boundary. Up to 60% of the IRM signal is allocated to a biogenic EM underlining the importance of bacterial magnetite even in siliciclastic sediments. Magnetosomes are found well preserved over most of the record, indicating suboxic conditions. Temporal variations of the aeolian and fluvial EMs appear to faithfully reproduce and support trends of dry and humid conditions on the continent. The proportion of aeolian to fluvial material was dramatically higher during Heinrich Stadials, especially during Heinrich Stadial 1. Dust export from the Arabian-Asian corridor appears to vary contemporaneous to increased dust fluxes on the continental margin of NW Africa emphasizing that melt-water discharge in the North Atlantic had an enormous impact on atmospheric dynamics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Phosphorus is an essential nutrient for life. In the ocean, phosphorus burial regulates marine primary production**1, 2. Phosphorus is removed from the ocean by sedimentation of organic matter, and the subsequent conversion of organic phosphorus to phosphate minerals such as apatite, and ultimately phosphorite deposits**3, 4. Bacteria are thought to mediate these processes**5, but the mechanism of sequestration has remained unclear. Here, we present results from laboratory incubations in which we labelled organic-rich sediments from the Benguela upwelling system, Namibia, with a 33P-radiotracer, and tracked the fate of the phosphorus. We show that under both anoxic and oxic conditions, large sulphide-oxidizing bacteria accumulate 33P in their cells, and catalyse the nearly instantaneous conversion of phosphate to apatite. Apatite formation was greatest under anoxic conditions. Nutrient analyses of Namibian upwelling waters and sediments suggest that the rate of phosphate-to-apatite conversion beneath anoxic bottom waters exceeds the rate of phosphorus release during organic matter mineralization in the upper sediment layers. We suggest that bacterial apatite formation is a significant phosphorus sink under anoxic bottom-water conditions. Expanding oxygen minimum zones are projected in simulations of future climate change**6, potentially increasing sequestration of marine phosphate, and restricting marine productivity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Marine- and terrestrial-derived biomarkers (alkenones, brassicasterol, dinosterol, and long-chain n-alkanes), as well as carbonate, biogenic opal, and ice-rafted debris (IRD), were measured in two sediment cores in the Sea of Okhotsk, which is located in the northwestern Pacific rim and characterized by high primary productivity. Down-core profiles of phytoplankton markers suggest that primary productivity abruptly increased during the global Meltwater Pulse events 1A (about 14 ka) and 1B (about 11 ka) and stayed high in the Holocene. Spatial and temporal distributions of the phytoplankton productivity were found to be consistent with changes in the reconstructed sea ice distribution on the basis of the IRD. This demonstrates that the progress and retreat of sea ice regulated primary productivity in the Sea of Okhotsk with minimum productivity during the glacial period. The mass accumulation rates of alkenones, CaCO3, and biogenic opal indicate that the dominant phytoplankton species during deglaciation was the coccolithophorid, Emiliania huxleyi, which was replaced by diatoms in the late Holocene. Such a phytoplankton succession was probably caused by an increase in silicate supply to the euphotic layer, possibly associated with a change in surface hydrography and/or linked to enhanced upwelling of North Pacific Deep Water.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Phosphorus cycling in the ocean is influenced by biological and geochemical processes that are reflected in the oxygen isotope signature of dissolved inorganic phosphate (Pi). Extending the Pi oxygen isotope record from the water column into the seabed is difficult due to low Pi concentrations and small amounts of marine porewaters available for analysis. We obtained porewater profiles of Pi oxygen isotopes using a refined protocol based on the original micro-extraction designed by Colman (2002). This refined and customized method allows the conversion of ultra-low quantities (0.5 - 1 µmol) of porewater Pi to silver phosphate (Ag3PO4) for routine analysis by mass spectrometry. A combination of magnesium hydroxide co-precipitation with ion exchange resin treatment steps is used to remove dissolved organic matter, anions, and cations from the sample before precipitating Ag3PO4. Samples as low as 200 µg were analyzed in a continuous flow isotope ratio mass spectrometer setup. Tests with external and laboratory internal standards validated the preservation of the original phosphate oxygen isotope signature (d18OP) during micro extraction. Porewater data on d18OP has been obtained from two sediment cores of the Moroccan margin. The d18OP values are in a range of +19.49 to +27.30 per mill. We apply a simple isotope mass balance model to disentangle processes contributing to benthic P cycling and find evidence for Pi regeneration outbalancing microbial demand in the upper sediment layers. This highlights the great potential of using d18OP to study microbial processes in the subseafloor and at the sediment water interface.