234 resultados para estiramento crustal
em Publishing Network for Geoscientific
Resumo:
We report on newly discovered mud volcanoes located at about 4500 m water depth 90 km west of the deformation front of the accretionary wedge of the Gulf of Cadiz, and thus outside of their typical geotectonic environment. Seismic data suggest that fluid flow is mediated by a >400-km-long strike-slip fault marking the transcurrent plate boundary between Africa and Eurasia. Geochemical data (Cl, B, Sr, 87Sr/86Sr, Delta18O, DeltaD) reveal that fluids originate in oceanic crust older than 140 Ma. On their rise to the surface, these fluids receive strong geochemical signals from recrystallization of Upper Jurassic carbonates and clay-mineral dehydration in younger terrigeneous units. At present, reports of mud volcanoes in similar deep-sea settings are rare, but given that the large area of transform-type plate boundaries has been barely investigated, such pathways of fluid discharge may provide an important, yet unappreciated link between the deeply buried oceanic crust and the deep ocean.
Resumo:
We analyze 2006-2009 data from four continuous Global Positioning System (GPS) receivers located between 5 and 150 km from the glacier Jakobshavn Isbrae, West Greenland. The GPS stations were established on bedrock to determine the vertical crustal motion due to the unloading of ice from Jakobshavn Isbrae. All stations experienced uplift, but the uplift rate at Kangia North, only 5 km from the glacier front, was about 10 mm/yr larger than the rate at Ilulissat, located only ~45 km further away. This suggests that most of the uplift is due to the unloading of the Earth's surface as Jakobshavn thins and loses mass. Our estimate of Jakobshavn's contribution to uplift rates at Kangia North and Ilulissat are 14.6 ± 1.7 mm/yr and 4.9 ± 1.1 mm/yr, respectively. The observed rates are consistent with a glacier thinning model based on repeat altimeter surveys from NASA's Airborne Topographic Mapper (ATM), which shows that Jakobshavn lost mass at an average rate of 22 ± 2 km**3/yr between 2006 and 2009. At Kangia North and Ilulissat, the predicted uplift rates computed using thinning estimates from the ATM laser altimetry are 12.1 ± 0.9 mm/yr and 3.2 ± 0.3 mm/yr, respectively. The observed rates are slightly larger than the predicted rates. The fact that the GPS uplift rates are much larger closer to Jakobshavn than further away, and are consistent with rates inferred using the ATM-based glacier thinning model, shows that GPS measurements of crustal motion are a potentially useful method for assessing ice-mass change models.
Resumo:
Seismic velocities have been measured at confining pressures of 100 MPa and 600 MPa for sheeted dike samples recovered during Ocean Drilling Program Legs 137 and 140. The compressional- and shear-wave velocities show an increase with depth at Hole 504B, which is in sharp contrast to the atmospheric pressure velocity measurements performed as part of the shipboard analyses. Rocks exposed to different types of alteration and fracture patterns show distinct changes in their physical properties. The seismic reflectors observed on the vertical seismic profile (VSP) experiment performed during Leg 111 may have been caused by low velocity zones resulting from alteration. The amount of fracturing and hydrothermal alteration in several zones also may have contributed to the acoustic impedance contrast necessary to produce the E5 reflector. Poisson's ratios calculated from laboratory velocity measurements show several low values at depths ranging from 1600 mbsf to 2000 mbsf, which tends to follow similar trends obtained from previous oceanic refraction experiments. A comparison of physical properties between samples recovered from Hole 504B and ophiolite studies in the Bay of Islands and Oman shows a good correlation with the Bay of Islands but significant differences from the measurements performed in the Oman complex.
Resumo:
A high-resolution, 8000 year-long ice core record from the Mt. Logan summit plateau (5300 m asl) reveals the initiation of trans-Pacific lead (Pb) pollution by ca. 1730, and a >10-fold increase in Pb concentration (1981-1998 mean = 68.9 ng/l) above natural background (5.6 ng/l) attributed to rising anthropogenic Pb emissions from Asia. The largest rise in North Pacific Pb pollution from 1970-1998 (end of record) is contemporaneous with a decrease in Eurasian and North American Pb pollution as documented in ice core records from Greenland, Devon Island, and the European Alps. The distinct Pb pollution history in the North Pacific is interpreted to result from the later industrialization and less stringent abatement measures in Asia compared to North America and Eurasia. The Mt. Logan record shows evidence for both a rising Pb emissions signal from Asia and a trans-Pacific transport efficiency signal related to the strength of the Aleutian Low.
Resumo:
The mass accumulation rates (MARs) of aeolian dust in the ocean basins provide an important record of climate in the continental source regions of atmospheric dust and of the prevailing wind patterns responsible for dust transport in the geologic past. The incorporation of other terrigenous components such as volcanic ashes in seafloor sediments, however, often obscures the aeolian dust record. We describe a new approach which uses the delivery rate of crustal 4He to seafloor sediments as a proxy for the mass accumulation rate of old continental dust which is unaffected by the addition of other terrigenous components. We have determined the flux of crustal 4He delivered to the seafloor of the Ontong Java Plateau (OJP) in the western equatorial Pacific over the last 1.9 Myrs. Crustal 4He fluxes vary between 7.7 and 30 ncc/cm**2/kyr and show excellent correlation with global climate as recorded by oxygen isotopes, with high crustal 4He fluxes associated with glacial periods over the entire interval studied. Furthermore, the onset of strong 100 kyr glacial-interglacial climate cycling is clearly seen in the 4He flux record about 700 kyrs ago. These data record variations in the supply of Asian dust in response to climate driven changes in the aridity of the Asian dust sources, consistent with earlier work on Asian dust flux to the northern Pacific Ocean. However, in contrast to previous studies of sites in the central and eastern equatorial Pacific Ocean, there is no evidence that the Inter Tropical Convergence Zone (an effective rainfall barrier to the southward transport of northern hemisphere dust across the equator in the central and eastern Pacific) has influenced the delivery of Asian dust to the OJP. The most likely carrier phase for crustal helium in these sediments is zircon, which can reasonably account for all the 4He observed in the samples. As a first order estimate, these results suggest that the mass accumulation rate of Asian dust on the OJP over the last 1.9 Myrs varied from about 4 to 15 mg/ cm**2/kyr. In contrast, previous studies show that over the same interval the total MAR of terrigenous dust (i.e. Asian dust plus local volcanics) on OJP varied between about 34 and 90 mg/ cm**2/kyr.
Resumo:
Oceanic crustal drilling by R. V. Glomar Challenger at 15 sites in the North Atlantic has led to a complex picture of the upper half kilometer of the crust. Elements of the picture include the absence of the source for linear magnetic anomalies, marked episodicity of volcanic activity, ubiquitous low temperature alteration and evidence for large scale tectonic disturbance. Comparison sections in the Pacific and much deeper crustal drilling are needed to attack problems arising from the North Atlantic results.
Resumo:
Bottom morphology of the Jan Mayen transform fracture zone and rock chemistry data show that petrological and chemical specific features of igneous rocks can result from higher permeability of the transform fracture zone and deeper penetration of ocean water into the lithosphere in comparison with rift zones of the Kolbeinsey and Mohn's mid-ocean ridges. Age of alkaline magmatism of the Jan Mayen fracture zone is similar to that of rift zones due to palingenesis of metamorphosed and hydrated mantle and crustal rocks.
Resumo:
The flows and sills drilled at Sites 794 and 797 in the Yamato Basin of the Japan Sea are subalkalic, olivine, and/or plagioclase phyric basalts. Compositionally, the rocks can be divided into a depleted, low-K type and an enriched, relatively high-K type. In addition, two contrasting evolution trends are reflected in the rock compositions, which allow four different magmatic suites to be identified. It is suggested that the depleted or enriched nature of these suites represent primary characteristics, while the different evolution trends are related to fractionation processes in crustal magma chambers. A tholeiitic evolution trend, with increasing FeO and TiO2 and decreasing Al2O3, can be modelled by fractional crystallization of 40%-50% plagioclase, olivine, and augite. A mildly calc-alkalic evolution trend, with decreasing FeO, increasing Al2O3, and nearly constant TiO2, can be modelled by 8%-12% olivine fractionation. Mineralogical evidence suggests that these differences may be related to the effect of small amounts of water during crystallization of the calc-alkalic suites. The tholeiitic suites occur in the lower parts of the drill cores, while the calc-alkalic suites occur in the upper parts. This suggests a complex tectonic and magmatic evolution, perhaps reflecting a transition between calc-alkalic magmatism related to subduction zone activity and tholeiitic magmatism related to back-arc spreading. Furthermore, any magmatic model must be able to account for the range in parental magmas from depleted to enriched throughout the tectonic history of the Yamato Basin.
(Table 1) Field relationship of selected samples recovered from the north wall of the Hess Deep Rift
Resumo:
Ocean Drilling Program Hole 923A, located on the western flank of the Mid-Atlantic Ridge south of the Kane Fracture Zone, recovered primitive gabbros that have mineral trace element compositions inconsistent with growth from a single parental melt. Plagioclase crystals commonly show embayed anorthitic cores overgrown by more albitic rims. Ion probe analyses of plagioclase cores and rims show consistent differences in trace element ratios, indicating variation in the trace element characteristics of their respective parental melts. This requires the existence of at least two distinct melt compositions within the crust during the generation of these gabbros. Melt compositions calculated to be parental to plagioclase cores are depleted in light rare earth elements, but enriched in yttrium, compared to basalts from this region of the Mid-Atlantic Ridge, which are normal mid-ocean ridge basalt (N-MORB). Clinopyroxene trace element compositions are similar to those predicted to be in equilibrium with N-MORB. However, primitive clinopyroxene crystals are much more magnesian than those produced in one-atmosphere experiments on N-MORB, suggesting that the major element composition of the melt was unlike N-MORB. These data require that the diverse array of melt compositions generated within the mantle beneath mid-ocean ridges are not always fully homogenised during melt extraction from the mantle and that the final stage of mixing can occur efficiently within crustal magma chambers. This has implications for the process of melt extraction from the mantle and the liquid line of descent of MORB
Resumo:
Compressional (Vp) and shear (Vs) wave velocities have been measured to 1.0 kbar for 14 cores of well-consolidated sedimentary rock from Atlantic and Pacific sites of the Deep Sea Drilling Project. The range of VP (2.05-5.38 km/sec at 0.5 kbar) shows significant overlap with the range of oceanic layer-2 seismic velocities determined by marine refraction surveys, suggesting that sedimentary rocks may, in some regions, constitute the upper portion of layer 2. Differing linear relationships between VP and Vs for basalts and sedimentary rocks, however, may provide a method of resolving layer-2 composition. This is illustra ted for a refraction survey site on the flank of the Mid-Atlantic Ridge where layer-2 velocities agree with basalt, and two sites on the Saya de Malha Bank in the Indian Ocean where layer-2 velocities appear to represent sedimentary rock.
Resumo:
On the basis of their respective eruptive environments and chemical characteristics, alkalic dolerite sills from the northern Pigafetta Basin (Site 800) and tholeiitic pillow lavas from the Mariana Basin (Site 802) sampled during Ocean Drilling Program Leg 129 are considered to represent examples of the widespread mid-Cretaceous volcanic event in the western Pacific. Both groups of basic rocks feature mild, low-grade, anoxic smectite-celadonite-carbonate-pyrite alteration; late-stage oxidation is very limited in extent, with the exception of the uppermost sill unit at Site 800. The aphyric and nonvesicular Site 800 alkalic dolerite sills are all well-evolved mineralogically and chemically, being mainly of hawaiite composition, and are similar to ocean island basalts. They are characterized by high contents of incompatible elements (for example, 300-400 ppm Zr), well-fractionated rare earth element patterns ([La/Yb]N 18-21) and HIMU isotopic characters. They probably represent deep-sea, lateral, intrusive off-shoots from nearby seamounts of similar age. The olivine-plagioclase +/- clinopyroxene phyric tholeiitic pillow lavas and thin flows of Site 802 are nonvesicular and quench-textured throughout. Relative to normal-type mid-ocean ridge basalt, they are enriched in large-ion-lithophile elements, exhibit flat (unfractionated) rare earth element patterns and have distinctive (lower) Zr/Nb, Zr/Ta, La/Ta, and Hf/Th ratios. Overall they are compositionally and isotopically similar to the mid-Cretaceous tholeiites of the Nauru basin and the Ontong-Java and Manihiki plateaus. The Site 802 tholeiites differ from the thickened crustal segments of the oceanic plateaus, however, in apparently representing only a thin veneer over the local basement in an off-axis environment.
Resumo:
Controversy has surrounded the issue of whether mantle plume activity was responsible for Pangaean continental rifting and massive flood volcanism (resulting in the Central Atlantic Magmatic Province or CAMP, emplaced around 200 Ma) preceding the opening of the central Atlantic Ocean in the Early Mesozoic. Our new Sr-Nd-Pb isotopic and trace element data for the oldest basalts sampled from central Atlantic oceanic crust by deep-sea drilling show that oceanic crust generated from about 160 to 120 Ma displays clear isotopic and chemical signals of plume contamination (e.g., 87Sr/86Sr(i) = 0.7032-0.7036, epsilonNd(t) =+6.2 to +8.2, incompatible element patterns with positive Nb anomalies), but these signals are muted or absent in crust generated between 120 and 80 Ma, which resembles young Atlantic normal mid-ocean ridge basalt. The plume-affected pre-120 Ma Atlantic crustal basalts are isotopically similar to lavas from the Ontong Java Plateau, and may represent one isotopic end-member for CAMP basalts. The strongest plume signature is displayed near the center of CAMP magmatism but the hotspots presently located nearest this location in the mantle reference frame do not appear to be older than latest Cretaceous and are isotopically distinct from the oldest Atlantic crust. The evidence for widespread plume contamination of the nascent Atlantic upper mantle, combined with a lack of evidence for a long-lived volcanic chain associated with this plume, leads us to propose that the enriched signature of early Atlantic crust and possibly the eruption of the CAMP were caused by a relatively short-lived, but large volume plume feature that was not rooted at a mantle boundary layer. Such a phenomenon has been predicted by recent numerical models of mantle circulation.