40 resultados para erythema nodosum

em Publishing Network for Geoscientific


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Anti-herbivory defenses support persistence of seaweeds. Little is known, however, about temporal dynamics in the induction of grazer-deterrent seaweed traits. In two induction experiments, consumption rates of the periwinkle Littorina obtusata (L.) on the brown seaweed Ascophyllum nodosum (L.) Le Jolis were measured in 3-d intervals. Changes in palatability of directly grazed A. nodosum were tested every 3 d with feeding assays using fresh and reconstituted seaweed pieces. Likewise, assays with fresh A. nodosum assessed changes in seaweed palatability in response to water-borne cues from nearby grazed conspecifics. Consumption rates of L. obtusata varied significantly during the 27-d induction phase of each experiment. Direct grazing by L. obtusata lowered palatability of fresh and reconstituted A. nodosum pieces to conspecific grazers after 15 d as well as after 6 and 12 d, respectively. After 12, 18, and 24 d, fresh A. nodosum located downstream of L. obtusata-grazed conspecifics was significantly less palatable than A. nodosum located downstream of ungrazed conspecifics. Changes in L. obtusata consumption rates and A. nodosum palatability during both induction experiments suggest temporal variation of grazer-deterrent responses, which may complicate experimental detection of inducible anti-herbivory defenses.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In search of a meaningful stress indicator for Fucus vesiculosus we found that the often used quantitative determination procedures for the polysaccharide laminarin (beta-1,3-glucan) result in different kind of problems, uncertainties and limitations. This chemical long-term storage form of carbon enables perennial brown algae in seasonally fluctuating ecosystems to uncouple growth from photosynthesis. Because of this high ecological relevance a reliable and precise method for determination and quantification of laminarin is needed. Therefore, a simple, cold water extraction method coupled to a new quantitative liquid chromatography-mass spectrometrical method (LC-MS) was developed. Laminarin was determined in nine out of twelve brown algal species, and its expected typical molar mass distribution of 2000-7000 Da was confirmed. Furthermore, laminarin consisted of a complex mixture of different chemical forms, since fifteen chemical laminarin species with distinct molecular weights were measured in nine species of brown algae. Laminarin concentrations in the algal tissues ranged from 0.03 to 0.86% dry weight (DW). The direct chemical characterization and quantification of laminarin by LC-MS represents a powerful method to verify the biochemical and ecological importance of laminarin for brown algae. Single individuals of Laminaria hyperborea, L. digitata, Saccharina latissima, F. serratus, F. vesiculosus, F. spiralis, Himanthalia elongata, Cystoseira tamariscifolia, Pelvetia canaliculata, Ascophyllum nodosum, Halidrys siliquosa and Dictyota dichotoma were collected in fall (18.11.2013) during spring low tide from the shore of Finavarra, Co. Clare, west coast of Ireland (53° 09' 25'' N, 09° 06' 58'' W). After sampling, the different algae were immediately transported to the lab, lyophilized and sent to the University of Rostock. Laminarin was extracted with cold ultrapure water from the algal samples. Before extraction they were ground to < 1 mm grain size with an analytical mill (Ika MF 10 Basic). The algal material (approx. 1.5 g DW) was extracted in ultrapure water (8 mL) on a shaker (250 rpm) for 5 h. After the addition of surplus ultrapure water (4 mL) and shaking manually, 1 mL of the sample was filter centrifuged (45 µm) at 14,000 rpm (Hettich Mikro 22 R). The slightly viscous supernatant was free of suspended material and converted into a microvial (300 µL) for further analysis. The extracts were analyzed using liquid chromatography-mass spectrometry (LC-MS) analysis (LTQ Velos Pro ion trap spectrometer with Accela HPLC, Thermo Scientific). Laminarin species were separated on a KinetexTM column (2.6 µm C18, 150 x 3 mm). The mobile phase was 90 % ultrapure water and 10 % acetonitrile, run isocratically at a flow rate of 0.2 mL min-1. MS was working in ESI negative ion mode in a mass range of 100 - 4000 amu. Glucose contents were determined after extraction using high-performance liquid chromatography (HPLC). Extracted samples were analyzed in an HPLC (SmartLine, Knauer GmbH) equipped with a SUPELCOGELTM Ca column (30 x 7,8 mm without preColumn) and RI-detector (S2300 PDA S2800). Water was used as eluent at a flow rate of 0.8 mL min-1 at 75 °C. Glucose was quantified by comparison of the retention time and peak area with standard solutions using ChromGate software. Mannitol was extracted from three subsamples of 10-20 mg powdered alga material (L. hyperborea, L. digitata, S. latissima, F. serratus, F. vesiculosus, F. spiralis, H. elongata, P. canaliculata, A. nodosum, H. siliquosa) and quantified, following the HPLC method described by Karsten et al. (1991). For analyzing carbon and nitrogen contents, dried algal material was ground to powder and three subsamples of 2 mg from each alga thalli were loaded and packed into tin cartridges (6×6×12 mm). The packages were combusted at 950 °C and the absolute contents of C and N were automatically quantified in an elemental analyzer (Elementar Vario EL III, Germany) using acetanilide as standard according to Verardo et al. (1990).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

After detachment from benthic habitats, the epibiont assemblages on floating seaweeds undergo substantial changes, but little is known regarding whether succession varies among different seaweed species. Given that floating algae may represent a limiting habitat in many regions, rafting organisms may be unselective and colonize any available seaweed patch at the sea surface. This process may homogenize rafting assemblages on different seaweed species, which our study examined by comparing the assemblages on benthic and floating individuals of the fucoid seaweeds Fucus vesiculosus and Sargassum muticum in the northern Wadden Sea (North Sea). Species richness was about twice as high on S. muticum as on F. vesiculosus, both on benthic and floating individuals. In both seaweed species benthic samples were more diverse than floating samples. However, the species composition differed significantly only between benthic thalli, but not between floating thalli of the two seaweed species. Separate analyses of sessile and mobile epibionts showed that the homogenization of rafting assemblages was mainly caused by mobile species. Among these, grazing isopods from the genus Idotea reached extraordinarily high densities on the floating samples from the northern Wadden Sea, suggesting that the availability of seaweed rafts was indeed limiting. Enhanced break-up of algal rafts associated with intense feeding by abundant herbivores might force rafters to recolonize benthic habitats. These colonization processes may enhance successful dispersal of rafting organisms and thereby contribute to population connectivity between sink populations in the Wadden Sea and source populations from up-current regions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ostracodes are less common than might be normally expected at Sites 642, 643, and 644, perhaps pointing to the fact that the marine habitat below the overlying Pleistocene ice covers was a severe environment. This explanation, however, would not apply to the Pliocene and Miocene deposits from which ostracodes are just as poorly represented. In the latter case the Iceland-Faeroe Ridge might still have acted as a submerged barrier that did not allow an open ocean circulation of bottom waters. Thus the barrier presumably prevented an exchange of cold subarctic bottom water with that of the open Atlantic and therefore benthic deep-sea migration from the south was impeded. Some Quaternary species are, for the first time, recorded to extend to the Pliocene and/or Miocene.