10 resultados para environmental radioactivity
em Publishing Network for Geoscientific
Resumo:
99Tc levels were measured in seawater samples collected between 2000 and 2002 in the West Spitsbergen Current (WSC) and along the western coast of Svalbard or Spitzbergen and compared with available oceanographic 3-D modelling results for the late 1990s. Additional data from related regions are also presented in order to support the data interpretation. The seawater in the Arctic fjord Kongsfjorden on the western coast of Svalbard is influenced by the WSC, as shown by the 99Tc levels in surface water. By means of the WSC, 99Tc reaches the Eastern Fram Strait, where one branch of the WSC turns west into the East Greenland Current (EGC), and another branch continues northwards into the Arctic Ocean. Surface seawater collected in the central part of the WSC during a cruise on board the R/V "Polarstern" in the summer of 2000, showed higher levels of 99Tc than samples measured in Kongsfjorden in the spring of 2000. However, all levels measured in surface water are of the same order of magnitude. Data from sampling of deeper water in the WSC and EGC provide information pertaining to the lateral distribution of 99Tc. In all vertical profiling surveys (conducted in spring and summer), the highest levels of 99Tc were found in surface water. Comparison with oceanographic 3-D modelling indicates both significant seasonal variations in the lateral stratification of the WSC and variations with depth over shorter vertical distances. This information can be applied in sampling strategies, environmental monitoring, long-range transport of pollutants and physical oceanography.
Resumo:
Strontium-90 activity concentrations in surface soils and areal deposition densities have been studied at a site contaminated by an accidental release to atmosphere from the underground nuclear explosion 'Kraton-3' conducted near the Polar Circle (65.9°N, 112.3°E) within the territory of the former USSR in 1978. In 2001-2002, the ground surface contamination at 14 plots studied ranged from 20 to 15000 kBq/m**2, which significantly exceeds the value of 0.44 kBq/m**2 deduced for three background plots. The zone with substantial radiostrontium contamination extends, at least, 2.5 km in a north-easterly direction from the borehole. The average 137Cs/90Sr ratio in the ground contamination originated from the 'Kraton-3' fallout was estimated to be 0.55, which is significantly different from the ratio of 2.05 evaluated for background plots contaminated mostly from global fallout. Although vertical migration of 90Sr in all undisturbed soil profiles studied is more rapid than that for 137Cs, the depth of percolation of both radionuclides into the ground is mostly limited to the top 10-20 cm, which may be explained, primarily, by permafrost conditions. The horizontal migration rate of radiostrontium in the aqueous phase exceeds the radiocaesium migration rate by many times. This phenomenon seems to be a reason for the significant enrichment of the soil surface layers by radiostrontium at some sites, with variations occurring in accordance with small-scale irregularities of landscape.
Resumo:
An experiment was conceived in which we monitored degradation of GlcDGD. Independent of the fate of the [14C]glucosyl headgroup after hydrolysis from the glycerol backbone, the 14C enters the aqueous or gas phase whereas the intact lipid is insoluble and remains in the sediment phase. Total degradation of GlcDGD then is obtained by combining the increase of radioactivity in the aqueous and gaseous phases. We chose two different sediment to perform this experiment. One is from microbially actie surface sediment sampled in February 2010 from the upper tidal flat of the German Wadden Sea near Wremen (53° 38' 0N, 8° 29' 30E). The other one is deep subsurface sediments recovered from northern Cascadia Margin during Integrated Ocean Drilling Program Expedition 311 [site U1326, 138.2 meters below seafloor (mbsf), in situ temperature 20 °C, water depth 1,828 m. We performed both alive and killed control experiments for comparison. Surface and subsurface sediment slurry were incubated in the dark at in situ temperature, 4 °C and 20 °C for 300 d, respectively. The sterilized slurry was stored at 20 °C. All incubations were carried out under N2 headspace to ensure anaerobic conditions. The sampling frequency was high during the first half-month, i.e., after 1, 2, 7, and 14 d; thereafter, the sediment slurry was sampled every 2 months. At each time point, samples were taken in triplicate for radioactivity measurements. After 300 d of incubation, no significant changes of radioactivity in the aqueous phase were detected. This may be the result of either the rapid turnover of released [14C] glucose or the relatively high limit of detection caused by the slight solubility (equivalent to 2% of initial radioactivity) of GlcDGD in water. Therefore, total degradation of GlcDGD in the dataset was calculated by combining radioactivity of DIC, CH4, and CO2, leading to a minimum estimate.