2 resultados para electronic structure of metals and alloys

em Publishing Network for Geoscientific


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Lysosomal membrane stability, lipofuscin (LF), malondialdehyde (MDA), neutral lipid (NL) levels, as well as halogenated organic compounds (HOCs), Cr, Cd, Pb and Fe concentrations were analyzed in liver of black-legged kittiwake (BK), herring gull (HG), and northern fulmar (NF) chicks. There were significant species differences in the levels of NL, LF and lysosomal membrane stability. These parameters were not associated with the respective HOC concentrations. LF accumulation was associated with increasing Cr, Cd and Pb concentrations. HG presented the lowest lysosomal membrane stability and the highest. LF and NL levels, which indicated impaired lysosomes in HG compared to NF and BK. Lipid peroxidation was associated with HOC and Fe2+ levels. Specific HOCs showed positive and significant correlations with MDA levels in HG. The study indicates that contaminant exposure can affect lysosomal and lipid associated parameters in seabird chicks even at low exposure levels. These parameters may be suitable markers of contaminant induced stress in arctic seabirds.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Structure of mesoplankton and distribution of dissolved ammonia in the vicinity of an isolated seamount of the Louisville Ridge in the subantarctic zone of the Pacific Ocean was studied using data obtained in January 1985 in an area 20 x 30 nm. There were areas with both high (20-25 to 139 g/m**2 in the 0-200 m layer) and low biomass values (<10 g/m**2) of mesoplankton. In the areas with high biomass, a single species Calanus tonsus was strongly dominant (>80% of biomass); its population was relatively mature in seasonal terms, with relatively high percentage of individuals containing fat inclusions. Stations with high mesoplankton biomass also had relatively high concentrations of dissolved ammonia. Presence of plankton-rich areas corre¬lated with presence of a quasi-steady-state topographic eddy. Lifetimes of these nonuniformities in the structure of mesoplankton are estimated as 10-30 days.