3 resultados para electroless plating

em Publishing Network for Geoscientific


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ocean Drilling Program (ODP) Leg 134 was located in the central part of the New Hebrides Island Arc, in the Southwest Pacific. Here the d'Entrecasteaux Zone of ridges, the North d'Entrecasteaux Ridge and South d'Entrecasteaux Chain, is colliding with the arc. The region has a Neogene history of subduction polarity reversal, ridge-arc collision, and back-arc spreading. The reasons for drilling in this region included the following: (1) to determine the differences in the style and time scale of deformation associated with the two ridge-like features (a fairly continuous ridge and an irregularly topographic seamount chain) that are colliding with the central New Hebrides Island Arc; (2) to document the evolution of the magmatic arc in relation to the collision process and possible Neogene reversal of subduction; and (3) to understand the process of dewatering of a small accretionary wedge associated with ridge collision and subduction. Seven sites were occupied during the leg, five (Sites 827-831) were located in the d'Entrecasteaux Zone where collision is active. Three sites (Sites 827, 828, and 829) were located where the North d'Entrecasteaux Ridge is colliding, whereas two sites (Sites 830 and 831) were located in the South d'Entrecasteaux Chain collision zone. Sites 828 (on North d'Entrecasteaux Ridge) and 831 (on Bougainville Guyot) were located on the Pacific Plate, whereas all other sites were located on a microplate of the North Fiji Basin. Two sites (Sites 832 and 831) were located in the intra-arc North Aoba Basin. Results of Leg 134 drilling showed that forearc deformation associated with the North d'Entrecasteaux Ridge and South d'Entrecasteaux Chain collision is distinct and different. The d'Entrecasteaux Zone is an Eocene subduction/obduction complex with a distinct submerged island arc. Collision and subduction of the North d'Entrecasteaux Ridge results in off scraping of ridge material and plating of the forearc with thrust sheets (flakes) as well as distinct forearc uplift. Some offscraped sedimentary rocks and surficial volcanic basement rocks of the North d'Entrecasteaux Ridge are being underplated to the New Hebrides Island forearc. In contrast, the South d'Entrecasteaux Chain is a serrated feature resulting in intermittent collision and subduction of seamounts. The collision of the Bougainville Guyot has indented the forearc and appears to be causing shortening through thrust faulting. In addition, we found that the Quaternary relative convergence rate between the New Hebrides Island Arc at the latitude of Espiritu Santo Island is as high as 14 to 16 cm/yr. The northward migration rate of the d'Entrecasteaux Zone was found the be ~2 to 4 cm/yr based on the newly determined Quaternary relative convergence rate. Using these rates we established the timing of initial d'Entrecasteaux Zone collision with the arc at ~3 Ma at the latitude of Epi Island and fixed the impact of the North d'Entrecasteaux Ridge upon Espiritu Santo Island at early Pleistocene (between 1.89 and 1.58 Ma). Dewatering is occurring in the North d'Entrecasteaux Ridge accretionary wedge, and the wedge is dryer than other previously studied accretionary wedges, such as Barbados. This could be the result of less sediment being subducted at the New Hebrides compared to the Barbados.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A linear, N-S-trending belt of elliptical, positive magnetic anomalies occurs in central Nordaustlandet, northeast Svalbard. They extend from the Caledonian and older complexes in the vicinity of Duvefjorden, southwards beneath the western margin of Austfonna and the offshore areas covered by Carboniferous and younger strata, to the vicinity of Edge¯ya. One of the strongest anomalies occurs in inner Duvefjorden where it coincides with a highly magnetic quartz monzonite-granite pluton at Djupkilsodden. U-Pb and Pb-Pb zircon dating of this post-tectonic pluton defines an age of c. 415 Ma, this being based on the Pb-Pb analyses of three specimens (Pb-Pb ages of 414±10 Ma, 411±10 Ma and 408±10 Ma) and a U-Pb discordia with an upper intercept at 417+18/-7 Ma. Neighbouring felsic plutons in central Nordaustlandet, including the Rijpfjorden and Winsnesbreen granites, lack magnetic signatures in their exposed parts, but have a similar Caledonian age. The central Nordaustlandet magnetic anomalies appear to be part of a circa 300 km long linear belt of late Silurian or early Devonian post-tectonic plutonism that characterizes the Caledonian basement of eastern Svalbard. Felsic intrusions of similar age further west in Spitsbergen are likewise both highly magnetic (Hornemantoppen batholith) and largely non-magnetic (Newtontoppen batholiths / Chydeniusbreen granitoid suite). They all appear to have been intruded at the end of the main period of Caledonian terrane assembly of the northwestern Barents Shelf.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Precambrian basement beneath the Pechora Basin of northern Russia is known from deep (up to approx. 4.5 km) drill holes to be largely composed of Neoproterozoic successions, variously deformed and metamorphosed and intruded by magmatic suites of Vendian age. Presented here are new single- zircon, Pb-evaporation (Kober method) ages from eight intrusions across the Izhma, Pechora and Bolshezemel'skaya Zones, all from below the Lower Ordovician (locally Middle Cambrian) unconformity. The majority of the intrusions (six) yield remarkably similar ages of 550-560 Ma, apparently dating a widespread pulse of late- to post-tectonic magmatism. An early Vendian granite (618 Ma) has been identified in the northeasternmost region (Bolshezemel'skaya zone) and a Devonian granodiorite (380 Ma) in the Pechora Zone, where mid to late Palaeozoic magmatism has been previously reported. Evidence of inheritance in the zircon populations suggests the presence of Mesoproterozoic crust beneath the Neoproterozoic complexes.