2 resultados para early selection
em Publishing Network for Geoscientific
Resumo:
The extent to which the spatial distribution of marine planktonic microbes is controlled by local environmental selection or dispersal is poorly understood. Our ability to separate the effects of these two biogeographic controls is limited by the enormous environmental variability both in space and through time. To circumvent this limitation, we analyzed fossil diatom assemblages over the past ~1.5 million years from the world oceans and show that these eukaryotic microbes are not limited by dispersal. The lack of dispersal limitation in marine diatoms suggests that the biodiversity at the microbial level fundamentally differs from that of macroscopic animals and plants for which geographic isolation is a common component of speciation.
Resumo:
This study investigates abundance variations in Noelaerhabdaceae assemblages during the late Oligocene-early Miocene at three subtropical sites in the Atlantic and Pacific oceans (DSDP Sites 516, 608 and 588). At these three sites, nannofossil assemblages were characterized by the successive high proportion of Cyclicargolithus, Dictyococcites and Reticulofenestra. Local paleoceanographic changes, such as the input of nutrient-poor water masses, might explain shifts in ecological prominence within the Noelaerhabdaceae at DSDP Site 516 (South Atlantic). But the similar timing of a decline in Cyclicargolithus at the three studied sites more likely corresponds to a global process. Here, we explore possible causes for this long-term taxonomic turnover. A global change in climate, associated with early Miocene glaciations, could have triggered a decline in fitness of the taxon Cyclicargolithus. The ecological niche made vacant because of the decrease in Cyclicargolithus could then have been exploited by Dictyococcites and Reticulofenestra that became prominent in the assemblages after 20.5 Ma. Alternatively, this global turnover might reflect a gradual evolutionary succession and be the result of other selection pressures, such as increased competition between Cyclicargolithus and Dictyococcites/Reticulofenestra. A diversification within Dictyococcites/Reticulofenestra, indicated by an expansion in the size variation within this group since ~ 20.5 Ma, may have contributed to the decreased fitness of Cyclicargolithus.