12 resultados para early fertilization
em Publishing Network for Geoscientific
Resumo:
Outbreaks of crown-of-thorns starfish (COTS), Acanthaster planci, contribute to major declines of coral reef ecosystems throughout the Indo-Pacific. As the oceans warm and decrease in pH due to increased anthropogenic CO2 production, coral reefs are also susceptible to bleaching, disease and reduced calcification. The impacts of ocean acidification and warming may be exacerbated by COTS predation, but it is not known how this major predator will fare in a changing ocean. Because larval success is a key driver of population outbreaks, we investigated the sensitivities of larval A. planci to increased temperature (2-4 °C above ambient) and acidification (0.3-0.5 pH units below ambient) in flow-through cross-factorial experiments (3 temperature × 3 pH/pCO2 levels). There was no effect of increased temperature or acidification on fertilization or very early development. Larvae reared in the optimal temperature (28 °C) were the largest across all pH treatments. Development to advanced larva was negatively affected by the high temperature treatment (30 °C) and by both experimental pH levels (pH 7.6, 7.8). Thus, planktonic life stages of A. planci may be negatively impacted by near-future global change. Increased temperature and reduced pH had an additive negative effect on reducing larval size. The 30 °C treatment exceeded larval tolerance regardless of pH. As 30 °C sea surface temperatures may become the norm in low latitude tropical regions, poleward migration of A. planci may be expected as they follow optimal isotherms. In the absence of acclimation or adaptation, declines in low latitude populations may occur. Poleward migration will be facilitated by strong western boundary currents, with possible negative flow-on effects on high latitude coral reefs. The contrasting responses of the larvae of A. planci and those of its coral prey to ocean acidification and warming are considered in context with potential future change in tropical reef ecosystems.
Resumo:
The impact of global climate change on coral reefs is expected to be most profound at the sea surface, where fertilization and embryonic development of broadcast-spawning corals takes place. We examined the effect of increased temperature and elevated CO2 levels on the in vitro fertilization success and initial embryonic development of broadcast-spawning corals using a single male:female cross of three different species from mid- and high-latitude locations: Lyudao, Taiwan (22° N) and Kochi, Japan (32° N). Eggs were fertilized under ambient conditions (27 °C and 500 µatm CO2) and under conditions predicted for 2100 (IPCC worst case scenario, 31 °C and 1000 µatm CO2). Fertilization success, abnormal development and early developmental success were determined for each sample. Increased temperature had a more profound influence than elevated CO2. In most cases, near-future warming caused a significant drop in early developmental success as a result of decreased fertilization success and/or increased abnormal development. The embryonic development of the male:female cross of A. hyacinthus from the high-latitude location was more sensitive to the increased temperature (+4 °C) than the male:female cross of A. hyacinthus from the mid-latitude location. The response to the elevated CO2 level was small and highly variable, ranging from positive to negative responses. These results suggest that global warming is a more significant and universal stressor than ocean acidification on the early embryonic development of corals from mid- and high-latitude locations.
Resumo:
Increasing atmospheric CO2 can decrease seawater pH and carbonate ions, which may adversely affect the larval survival of calcareous animals. In this study, we simulated future atmospheric CO2 concentrations (800, 1500, 2000 and 3000 ppm) and examined the effects of ocean acidification on the early development of 3 mollusks (the abalones Haliotis diversicolor and H. discus hannai and the oyster Crassostrea angulata). We showed that fertilization rate, hatching rate, larval shell length, trochophore development, veliger survival and metamorphosis all decreased significantly at different pCO2 levels (except oyster hatching). H. discus hannai were more tolerant of high CO2 compared to H. diversicolor. At 2000 ppm CO2, 79.2% of H. discus hannai veliger larvae developed normally, but only 13.3% of H. diversicolor veliger larvae. Tolerance of C. angulata to ocean acidification was greater than the 2 abalone species; 50.5% of its D-larvae developed normally at 3000 ppm CO2. This apparent resistance of C. angulata to ocean acidification may be attributed to their adaptability to estuarine environments. Mechanisms underlying the resistance to ocean acidification of both abalones requires further investigation. Our results suggest that ocean acidification may decrease the yield of these 3 economically important shellfish if increasing CO2 is a future trend.
Resumo:
The effect of pH ranging from 8.0 to 6.8 (total scale - pHT) on fertilization, cleavage and larval development until pluteus stage was assessed in an intertidal temperate sea urchin. Gametes were obtained from adults collected in two contrasting tide pools, one showing a significant nocturnal pH decrease (lowest pHT = 7.4) and another where pH was more stable (lowest pHT = 7.8). The highest pHT at which significant effects on fertilization and cleavage were recorded was 7.6. On the contrary, larval development was only affected below pHT 7.4, a value equal or lower than that reported for several subtidal species. This suggests that sea urchins inhabiting stressful intertidal environments produce offspring that may better resist future ocean acidification. Moreover, at pHT 7.4, the fertilization rate of gametes whose progenitors came from the tide pool with higher pH decrease was significantly higher, indicating a possible acclimatization or adaptation of gametes to pH stress.
Resumo:
As a result of high anthropogenic CO2 emissions, the concentration of CO2 in the oceans has increased, causing a decrease in pH, known as ocean acidification (OA). Numerous studies have shown negative effects on marine invertebrates, and also that the early life stages are the most sensitive to OA. We studied the effects of OA on embryos and unfed larvae of the great scallop (Pecten maximus Lamarck), at pCO(2) levels of 469 (ambient), 807, 1164, and 1599 µatm until seven days after fertilization. To our knowledge, this is the first study on OA effects on larvae of this species. A drop in pCO(2) level the first 12 h was observed in the elevated pCO(2) groups due to a discontinuation in water flow to avoid escape of embryos. When the flow was restarted, pCO(2) level stabilized and was significantly different between all groups. OA affected both survival and shell growth negatively after seven days. Survival was reduced from 45% in the ambient group to 12% in the highest pCO(2) group. Shell length and height were reduced by 8 and 15 %, respectively, when pCO(2) increased from ambient to 1599 µatm. Development of normal hinges was negatively affected by elevated pCO(2) levels in both trochophore larvae after two days and veliger larvae after seven days. After seven days, deformities in the shell hinge were more connected to elevated pCO(2) levels than deformities in the shell edge. Embryos stained with calcein showed fluorescence in the newly formed shell area, indicating calcification of the shell at the early trochophore stage between one and two days after fertilization. Our results show that P. maximus embryos and early larvae may be negatively affected by elevated pCO(2) levels within the range of what is projected towards year 2250, although the initial drop in pCO(2) level may have overestimated the effect of the highest pCO(2) levels. Future work should focus on long-term effects on this species from hatching, throughout the larval stages, and further into the juvenile and adult stages.
Resumo:
The effect of pH ranging from 8.0 to 6.8 (total scale - pHT) on fertilization, cleavage and larval development until pluteus stage was assessed in an intertidal temperate sea urchin. Gametes were obtained from adults collected in two contrasting tide pools, one showing a significant nocturnal pH decrease (lowest pHT = 7.4) and another where pH was more stable (lowest pHT = 7.8). The highest pHT at which significant effects on fertilization and cleavage were recorded was 7.6. On the contrary, larval development was only affected below pHT 7.4, a value equal or lower than that reported for several subtidal species. This suggests that sea urchins inhabiting stressful intertidal environments produce offspring that may better resist future ocean acidification. Moreover, at pHT 7.4, the fertilization rate of gametes whose progenitors came from the tide pool with higher pH decrease was significantly higher, indicating a possible acclimatization or adaptation of gametes to pH stress.
Resumo:
Larval stages are among those most vulnerable to ocean acidification (OA). Projected atmospheric CO2 levels for the end of this century may lead to negative impacts on communities dominated by calcifying taxa with planktonic life stages. We exposed Mediterranean mussel (Mytilus galloprovincialis) sperm and early life stages to pHT levels of 8.0 (current pH) and 7.6 (2100 level) by manipulating pCO2 level (380 and 1000 ppm). Sperm activity was examined at ambient temperatures (16-17 °C) using individual males as replicates. We also assessed the effects of temperature (ambient and = 20 °C) and pH on larval size, survival, respiration and calcification of late trochophore/early D-veliger stages using a cross-factorial design. Increased pCO2 had a negative effect on the percentage of motile sperm (mean response ratio R= 71%) and sperm swimming speed (R= 74%), possibly indicating reduced fertilization capacity of sperm in low concentrations. Increased temperature had a more prominent effect on larval stages than pCO2, reducing performance (RSize = 90% and RSurvival = 70%) and increasing energy demand (RRespiration = 429%). We observed no significant interactions between pCO2 and temperature. Our results suggest that increasing temperature might have a larger impact on very early larval stages of M. galloprovincialis than OA at levels predicted for the end of the century.
Resumo:
Increasing atmospheric CO2 equilibrates with surface seawater, elevating the concentration of aqueous hydrogen ions. This process, ocean acidification, is a future and contemporary concern for aquatic organisms, causing failures in Pacific oyster (Crassostrea gigas) aquaculture. This experiment determines the effect of elevated pCO2 on the early development of C. gigas larvae from a wild Pacific Northwest population. Adults were collected from Friday Harbor, Washington, USA (48°31.7' N, 12°1.1' W) and spawned in July 2011. Larvae were exposed to Ambient (400 µatm CO2), MidCO2 (700 µatm), or HighCO2 (1,000 µatm). After 24 h, a greater proportion of larvae in the HighCO2 treatment were calcified as compared to Ambient. This unexpected observation is attributed to increased metabolic rate coupled with sufficient energy resources. Oyster larvae raised at HighCO2 showed evidence of a developmental delay by 3 days post-fertilization, which resulted in smaller larvae that were less calcified.
Resumo:
An increasing number of studies have examined the effects of elevated carbon dioxide (CO2) and ocean acidification on marine fish, yet little is known about the effects on large pelagic fish. We tested the effects of elevated CO2 on the early life history development and behaviour of yellowtail kingfish, Seriola lalandi. Eggs and larvae were reared in current day control (450 µatm) and two elevated CO2 treatments for a total of 6 d, from 12 h post-fertilization until 3 d post-hatching (dph). Elevated CO2 treatments matched projections for the open ocean by the year 2100 under RCP 8.5 (880 µatm CO2) and a higher level (1700 µatm CO2) relevant to upwelling zones where pelagic fish often spawn. There was no effect of elevated CO2 on survival to hatching or 3 dph. Oil globule diameter decreased with an increasing CO2 level, indicating potential effects of elevated CO2 on energy utilization of newly hatched larvae, but other morphometric traits did not differ among treatments. Contrary to expectations, there were no effects of elevated CO2 on larval behaviour. Activity level, startle response, and phototaxis did not differ among treatments. Our results contrast with findings for reef fish, where a wide range of sensory and behavioural effects have been reported. We hypothesize that the absence of behavioural effects in 3 dph yellowtail kingfish is due to the early developmental state of newly hatched pelagic fish. Behavioural effects of high CO2 may not occur until larvae commence branchial acid-base regulation when the gills develop; however, further studies are required to test this hypothesis. Our results suggest that the early stages of kingfish development are tolerant to rising CO2 levels in the ocean.
Resumo:
Several experiments have shown a decrease of growth and calcification of organisms at decreased pH levels. There is a growing interest to focus on early life stages that are believed to be more sensitive to environmental disturbances such as hypercapnia. Here, we present experimental data, acquired in a commercial hatchery, demonstrating that the growth of planktonic mussel (Mytilus edulis) larvae is significantly affected by a decrease of pH to a level expected for the end of the century. Even though there was no significant effect of a 0.25-0.34 pH unit decrease on hatching and mortality rates during the first 2 days of development nor during the following 13-day period prior to settlement, final shells were respectively 4.5±1.3 and 6.0±2.3% smaller at pHNBS~7.8 (pCO2~1100-1200 µatm) than at a control pHNBS of ~8.1 (pCO2~460-640 µatm). Moreover, a decrease of 12.0±5.4% of shell thickness was observed after 15d of development. More severe impacts were found with a decrease of ~0.5 pHNBS unit during the first 2 days of development which could be attributed to a decrease of calcification due to a slight undersaturation of seawater with respect to aragonite. Indeed, important effects on both hatching and D-veliger shell growth were found. Hatching rates were 24±4% lower while D-veliger shells were 12.7±0.9% smaller at pHNBS~7.6 (pCO2~1900 µatm) than at a control pHNBS of ~8.1 (pCO2~540 µatm). Although these results show that blue mussel larvae are still able to develop a shell in seawater undersaturated with respect to aragonite, the observed decreases of hatching rates and shell growth could lead to a significant decrease of the settlement success. As the environmental conditions considered in this study do not necessarily reflect the natural conditions experienced by this species at the time of spawning, future studies will need to consider the whole larval cycle (from fertilization to settlement) under environmentally relevant conditions in order to investigate the potential ecological and economical losses of a decrease of this species fitness in the field.
Resumo:
Background: Climate change will lead to intense selection on many organisms, particularly during susceptible early life stages. To date, most studies on the likely biotic effects of climate change have focused on the mean responses of pooled groups of animals. Consequently, the extent to which inter-individual variation mediates different selection responses has not been tested. Investigating this variation is important, since some individuals may be preadapted to future climate scenarios. Methodology/Principal Findings: We examined the effect of CO2-induced pH changes ("ocean acidification") in sperm swimming behaviour on the fertilization success of the Australasian sea urchin Heliocidaris erythrogramma, focusing on the responses of separate individuals and pairs. Acidification significantly decreased the proportion of motile sperm but had no effect on sperm swimming speed. Subsequent fertilization experiments showed strong inter-individual variation in responses to ocean acidification, ranging from a 44% decrease to a 14% increase in fertilization success. This was partly explained by the significant relationship between decreases in percent sperm motility and fertilization success at delta pH = 0.3, but not at delta pH = 0.5. Conclusions and Significance: The effects of ocean acidification on reproductive success varied markedly between individuals. Our results suggest that some individuals will exhibit enhanced fertilization success in acidified oceans, supporting the concept of 'winners' and 'losers' of climate change at an individual level. If these differences are heritable it is likely that ocean acidification will lead to selection against susceptible phenotypes as well as to rapid fixation of alleles that allow reproduction under more acidic conditions. This selection may ameliorate the biotic effects of climate change if taxa have sufficient extant genetic variation upon which selection can act.
Resumo:
Ocean acidification, as a result of increased atmospheric CO2, has the potential to adversely affect the larval stages of many marine organisms and hence have profound effects on marine ecosystems. This is the first study of its kind to investigate the effects of ocean acidification on the early life-history stages of three echinoderms species, two asteroids and one irregular echinoid. Potential latitudinal variations on the effects of ocean acidification were also investigated by selecting a polar species (Odontaster validus), a temperate species (Patiriella regularis), and a tropical species (Arachnoides placenta). The effects of reduced seawater pH levels on the fertilization of gametes, larval survival and morphometrics on the aforementioned species were evaluated under experimental conditions. The pH levels considered for this research include ambient seawater (pH 8.1 or pH 8.2), levels predicted for 2100 (pH 7.7 and pH 7.6) and the extreme pH of 7.0, adjusted by bubbling CO2 gas into filtered seawater. Fertilization for Odontaster validus and Patiriella regularis for the predicted scenarios for 2100 was robust, whereas fertilization was significantly reduced in Arachnoides placenta. Larval survival was robust for the three species at pH 7.8, but numbers declined when pH dropped below 7.6. Normal A. placenta larvae developed in pH 7.8, whereas smaller larvae were observed for O. validus and P. regularis under the same pH treatment. Seawater pH levels below 7.6 resulted in smaller and underdeveloped larvae for all three species. The greatest effects were expected for the Antarctic asteroid O. validus but overall the tropical sand dollar A. placenta was the most affected by the reduction in seawater pH. The effects of ocean acidification on the asteroids O. validus and P. regulars, and the sand dollar A. placenta are species-specific. Several parameters, such as taxonomic differences, physiology, genetic makeup and the population's evolutionary history may have contributed to this variability. This study highlights the vulnerability of the early developmental stages and the complexity of ocean acidification. However, future research is needed to understand the effects at individual, community and ecosystem levels.