42 resultados para diterpene esters
em Publishing Network for Geoscientific
Resumo:
Biodiesel density is a key parameter in biodiesel simulations and process development. In this work we selected, evaluated and improved two density models, one theoretical (Rackett-Soave) and one empirical (Lapuerta's method) for methanol based biodiesels (FAME) and ethanol based biodiesel (FAEE). For this purpose, biodiesel was produced from vegetable oils (sunflower, rapeseed, soybean, olive, safflower and other two commercial mixtures of vegetable oils) and animal fats (edible and crude pork fat and beef tallow) using both methanol and ethanol for the transesterification reactions, and blended to get 21 FAME and 21 FAEE, reporting their density and detailed composition. Bibliographic data have also been used. The Rackett-Soave method has been improved by the use of a new acentric factor correlation, whereas the parameters of the empirical one are improved by considering a bigger density data bank. Results show that the evaluated models could be used to estimate the biodiesel density with a good grade of accuracy but the performed modifications improve the accuracy of the models: ARD (%) for FAME; 0.33, and FAEE; 0.26, both calculated with the modification of Rackett-Soave method and ARD (%) for FAME; 0.40 calculated with the modification of the Lapuerta's method).
Resumo:
A comparative study on the lipid composition of the liver and muscles has been performed in daubed shanny caught in summer (July) in Arctic waters at three different sites (biotopes) along the north-western coast of Spitsbergen. In marine organisms living at high latitudes, lipids play an especially important role, primarily as reserve substances and as a factor influencing adaptation to severe environmental conditions. Since the ecology of daubed shanny is poorly known, the data obtained may be considered novel.
Resumo:
The thermal effects of three (one major and two minor) Miocene diabase intrusions on Cretaceous black shales from DSDP site 41-368 have been analyzed. A concentration gradient was observed, especially for the hydrocarbons, decreasing towards the major intrusion and between the three sills. The thermally-altered samples in the proximity of and between the sills contained elemental sulfur and an excess of thermally-derived pristane over phytane. whereas, the unaltered sediments contained no elemental sulfur, and more phytane than pristane. A maximum yield of the extractable hydrocarbons was observed at a depth of 7 m below the major sill. Two classes of molecular markers were present in this bitumen suite. The first was sesqui-, di- and triterpenoids and steranes. which could be correlated with both terrigenous and autochthonous sources. They were geologically mature and showed no significant changes due to the thermal stress. The second class was found in the altered samples, which contained only polynuclear aromatic hydrocarbons with low alkyl substitution and sulfur and oxygen heterocyclic aromatic compounds. These compounds were derived from pyrolytic reactions during the thermal event. Kerogen was isolated from all of these samples, but only traces of humic substances were present. The H/C, N/C, d13C, d34S and dD all exhibit the expected effects of thermal stress. The kerogen becomes more aromatized and richer in 13C, 34S and D in the proximity of and between the sills. Maturation trends were also measured by the vitrinite reflectance and electron spin resonance, where the thermal stress could be correlated with an elevated country rock temperature and an increased degree of aromaticity. The effects of in situ thermal stress on the organic-rich shales resulted in the generation and expulsion of petroliferous material from the vicinity of the sills.
Resumo:
Data on amounts of various functional groups, i.e. aldehyde, acid, ester, alcohol, thiol and aromatic groups in several fractions of low-polarity dissolved organic matter are presented. An assumption that this organic matter is part of the lipid fraction is not confirmed. Amount of aromatic compounds in waters of the Northwest Indian Ocean is estimated to be about 1000 times higher than quantity of aromatic hydrocarbons discharged into the ocean each year in petroleum and petroleum products.
Resumo:
Lipid contents both in particulate matter and bottom sediments decreases with passage from the shelf toward the open ocean. Lipid concentration in particulate matter collected by a separator (Ls) decreases by a factor of 7 (from 7.05 to 0.95 % of dry matter), while in particulate matter collected on filters (Lf) it decreases by a factor of 13 (from 78 to 6 µg/l) in the vicinity of the Limpopo River and by a factor of 6 (from 74 to 13 µg/l) in the vicinity of the Zambezi River. Concentration of Lf also decreased with depth. In the upper sediment layers lipid concentration was 0.0028-0.039% of dry matter; all mud samples were richer in lipids, than sand samples. During sedimentogenesis there is an increase in proportion of lipids relative to other classes of organic matter, proportion of low-polarity compounds increases among the lipids, and proportion of hydrocarbons rises among these compounds. Sediments inherit composition of particulate matter to the greatest degree in the vicinity of river mouths.
Resumo:
Lipid components of hydrothermal deposits from the unusual field at 14°45'N MAR and from the typical field at 29°N MAR were studied. For the first time mixed nature of organic matter (OM) from hydrothermal sulfide deposits was established with use of biochemical, gas chromatographic, and molecular methods of studies. In composition of OM lipids of phytoplankton, those of chemosynthesis bacteria and non-biogenic synthesis lipids were determined. Specific conditions of localization of sulfide deposits originated from ''black smokers'' (reducing conditions, absence of free oxygen, presence of reduced sulfur preventing OM from decomposition) let biogenic material, including bacterial one, be preserved in sulfide deposits. The hydrothermal system at 14°45'N MAR is characterized by geological, geochemical and thermodynamic conditions allowing abiogenic synthesis of methane and petroleum hydrocarbons. For sulfide deposits at 29°N and other active hydrothermal fields known at MAR, abiogenic synthesis of hydrocarbons occurs in lower scales.
Resumo:
The effects of temperature and food was examined for Calanus finmarchicus and C. glacialis during 3 phases of the phytoplankton spring bloom in Disko Bay, western Greenland. The 2 species were collected during pre-bloom, bloom, and post-bloom and exposed to temperatures from 0 to 10°C, combined with deficient or excess food. Fecal pellet and egg production were measured as indices for grazing and secondary production, respectively. Furthermore, changes in body carbon, nitrogen, and lipid content were measured. C. glacialis sampled before the bloom and incubated with excess food exhibited high specific egg production at temperatures between 0 and 2.5°C. Higher temperatures did not increase egg production considerably, whereas egg production for C. finmarchicus more than tripled between 2.5 and 5°C. Starved C. glacialis produced eggs at all temperatures stimulated by increasing temperatures, whereas starved C. finmarchicus needed temperatures above 5°C to produce eggs fueled by their lipid stores. Few C. finmarchicus had mature gonads at the initiation of the pre-bloom and bloom experiment, and egg production of C. finmarchicus therefore only increased as the ratio of individuals with mature gonads increased. During the bloom, both C. glacialis and C. finmarchicus used the high food availability for egg production, while refueling or exhausting their lipid stores, respectively. Finally, during the post-bloom experiment, production was low by C. finmarchicus, whereas C. glacialis had terminated production. Our results suggest that a future warmer ocean will reduce the advantage of early spawning by C. glacialis and that C. finmarchicus will become increasingly prevalent.
Resumo:
This is the first high temporal-resolution study in Disko Bay covering population dynamics, grazing, reproduction, and biochemical composition of 3 dominating copepod species (Calanus finmarchicus, C. glacialis and C. hyperboreus) from late winter to midsummer in 2008. C. finmarchicus and C. glacialis ascended to the surface layer at the onset of the spring phytoplankton bloom, followed by C. hyperboreus 2 wk later. C. finmarchicus spawning occurred during the bloom and postbloom period, partially fueled by wax esters. C. glacialis commenced spawning before the bloom, yet it was greatly stimulated when food became available. However, feeding and reproduction was terminated after the main bloom despite the presence of food. In terms of feeding, this was also the strategy for C. hyperboreus. Between pre-bloom and post-bloom, C. finmarchicus showed an increase in carbon, nitrogen, and phospholipid content but a decrease in total lipid content. This was likely the result of protein synthesis, oocyte maturation, and spawning fueled by wax esters and by feeding. C. glacialis showed a similar pattern, although with an increasing total lipid content from pre-bloom to post-bloom, and an increasing wax ester and decreasing phospholipid content after reproduction was terminated. C. hyperboreus showed greatly increased content of carbon, nitrogen, and all lipid classes between the pre- and post-bloom periods. Hence, C. finmarchicus commenced feeding and spawning at the onset of the bloom and continued throughout the remaining study period. Both C. glacialis and C. hyperboreus females refueled their storage lipids (wax esters) during the bloom and post-bloom period, suggesting that they may spawn in an additional year.