5 resultados para distribution trade
em Publishing Network for Geoscientific
Resumo:
An organic-walled dinoflagellate cyst analysis was carried out on 53 surface sediment samples from West Africa (17-6°N) to obtain insight in the relationship between their spatial distribution and hydrological conditions in the upper water column as well as marine productivity in the study area. Multivariate analysis of the dinoflagellate cyst relative abundances and environmental parameters of the water column shows that sea-surface temperature, salinity, marine productivity and bottom water oxygen are the factors that relate significantly to the distribution patterns of individual species in the region. The composition of cyst assemblages and dinoflagellate cyst concentrations allows the identification of four hydrographic regimes; 1) the northern regime between 17 and 14°N characterized by high productivity associated with seasonal coastal upwelling, 2) the southern regime between 12 and 6°N associated with high-nutrient waters influenced by river discharge 3) the intermediate regime between 14 and 12°N influenced mainly by seasonal coastal upwelling additionally associated with fluvial input of terrestrial nutrients and 4) the offshore regime characterized by low chlorophyll-a concentrations in upper waters and high bottom water oxygen concentrations. Our data show that cysts of Polykrikos kofoidii, Selenopemphix quanta, Dubridinium spp., Echinidinium species, cysts of Protoperidinium monospinum and Spiniferites pachydermus are the best proxies to reconstruct the boundary between the NE trade winds and the monsoon winds in the subtropical eastern Atlantic Ocean. The association of Bitectatodinium spongium, Lejeunecysta oliva, Quinquecuspis concreta, Selenopemphix nephroides, Trinovantedinium applanatum can be used to reconstruct past river outflow variations within this region.
Resumo:
Surface sediments from the continental slope and rise of North-West Africa between the Canary lslands and the Cape Verde Islands are mainly composed of silt-sized material (2-63 µm). A number of sampling profiles were run normal to the coast and the composition of the silt fraction was determined quantitatively by scanning electron microscope analysis. The carbonate portion of the sediment was found to be nearly exclusively of biogenic origin. The most important contributors are planktonic foraminifers and coccoliths with minor contributions derived from pteropods. Plankton-produced biogenic opal such as diatoms and radiolarians play a very minor role. The high production rates of opal-silica plankton which exists in the surface waters of the NW-African upwelling system does not give rise to corresponding increases of opal accumulation in the bottom sediment. Benthic producers consist mainly of foraminifers and molluscs but the entire input from benthic producers is extremely small. An exception to this occurs in the prodelta sediments of the Senegal river. Downslope particle transport is indicated by the occurrence of shallow-water coralline algae, ascidian sclerites and cliona boring chips and can be traced as far down as the continental rise. The non-carbonate silt fraction mostly consists of quartz which is derived as eolian dust from the Sahara desert by the Harmattan and the NE-Trade-wind system. The percentage of carbonate in the surface sediments directly indicates the relative proportions of autochthonous biogenic components and terrigenous allochthonous quartz particles.
Resumo:
This study attempts to understand the significance of Uvigerina proboscidea in paleoceanographic reconstructions at the northern (tropical) Indian Ocean DSDP Site 214 from the Late Miocene through the Pleistocene. In this interval at this site, U. proboscidea is the most abundant species of the benthic assemblage and shows abrupt frequency changes (about 1-74%). Based on relative percentages of U. proboscidea calibrated with oxygen and carbon isotope record and the sediment accumulation rates, the modern distribution of the species in the Indian Ocean, and other evidence, the peaks of abundance of U. proboscidea are inferred to represent times of high-surface productivity, This productivity is related to intensified trade winds during strong southwest (SW) Indian monsoons, causing widespread upwelling along equatorial divergemce in the Indian Ocean. The sudden increase of U. proboscidea abundance at approximately 8.5-7.5 Ma reflects significant upwelling at the equatorial divergence. This event corresponds to the permanent build-up of West Antarctic ice sheets, and a major increase in SW Indian monsoons related upwelling in the northwestern Indian Ocean. The Chron-6 carbon shift at approximately 6.2 Ma is marked by another peak of abundance, reflecting widespread ocean fertility. The highest abundances of U. proboscidea and highest sediment accumulation rates occur between 5.8 and 5.1 Ma, which coincidies with the greatest development of Antarctic ice sheets and strong southwest monsoons. The higher percentages at 3.2-3.1 Ma, approximately 2.4 Ma, and 1.6 Ma all represent phases of high productivity at the equatorial divergence.
Resumo:
The distribution patterns of opal and quartz on the ocean floor of the subtropical southeastern Pacific have been defined by analyzing 59 surface-sediment samples. The opal distribution resembles that of primary productivity in the surface waters, except along the Peruvian and northern Chilean coasts, where dilution reduces opal values. The distribution pattern of quartz represents both eolian and fluvial transport. Quartz distribution extends out as a tongue in the same direction and position as the prevailing southeast trade winds. Along the South American coast, high quartz concentrations are found in patches near shore and decrease rapidly seaward.
Resumo:
Atmospheric dust samples collected along a transect off the West African coast have been investigated for their physical (grain-size distribution), mineralogical, and chemical (major elements) composition. On the basis of these data the samples were grouped into sets of samples that most likely originated from the same source area. In addition, shipboard-collected atmospheric meteorological data, modeled 4-day back trajectories for each sampling day and location, and Total Ozone Mapping Spectrometer aerosol index data for the time period of dust collection (February-March 1998) were combined and used to reconstruct the sources of the groups of dust samples. On the basis of these data we were able to determine the provenance of the various dust samples. It appears that the bulk of the wind-blown sediments that are deposited in the proximal equatorial Atlantic Ocean are transported in the lower level (>~900 hPa) NE trade wind layer, which is a very dominant feature north of the Intertropical Convergence Zone (ITCZ). However, south of the surface expression of the ITCZ, down to 5°S, where surface winds are southwesterly, we still collected sediments that originated from the north and east, carried there by the NE trade wind layer, as well as by easterly winds from higher altitudes. The fact that the size of the wind-blown dust depends not only on the wind strength of the transporting agent but also on the distance to the source hampers a direct comparison of the dust's size distributions and measured wind strengths. However, a comparison between eolian dust and terrigenous sediments collected in three submarine sediment traps off the west coast of NW Africa shows that knowledge of the composition of eolian dust is a prerequisite for the interpretation of paleorecords obtained from sediment cores in the equatorial Atlantic.