8 resultados para distribution shape

em Publishing Network for Geoscientific


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Clasts from the Cape Roberts Project cores CRP-2/2A and CRP-3 provide indications of glacially influenced depositional environments in Oligocene and Miocene strata in the western Victoria Land Basin, Antarctica. CRP-2/2A is interpreted to represent strongly glacially influenced, unconformity bound depositional sequences produced by repeated advance and retreat of floating and grounded ice across the shelf. A similar interpretation is extended to the upper 330 meters of the CRP-3 core, but the lower part of the core records shallow marine deposition with significantly less glacial influence. Clast shape analysis from selected coarse-grained facies throughout the cored interval indicates that most clasts are glacially sourced, with little distinction between diamictite and conglomeratic facies. Three dimensional clast fabric analysis from units immediately above sequence boundaries generally display weak or random fabrics and do not suggest that grounded ice actually reached the drillsite at these intervals. Striated and outsized clasts present in fine-grained lithofacies throughout the cores provide further evidence of sub-glacially transported sediment and iceberg rafting. The distribution of these striated and out-sized clasts indicate that a significant glacial influence persisted through most of the time represented by the cores with glaciers actively calving at sea-level introducing ice-berg rafted glacial debris even in the earliest Oligocene.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Phytoliths (siliceous plant microfossils) have been recovered from Cenozoic sediments (c. 34 to 17 Ma) in the CRP-2/2A and CRP-3 drillholes cored off Cape Roberts, Victoria Land Basin, Antarctica. The phytolith assemblages are sparse, but well-preserved and dominated by spherical forms similar to those of modern trees or shrubs. Rare phytoliths comparable to modern grass forms are also present. However, due to the paucity of phytolith data, any interpretations made are necessarily tentative. The assemblages of CRP-2/2A and the upper c. 250 m of CRP-3 are interpreted as representing a predominantly woody vegetation, including Nothofagus and Libocedrus with local areas of grass in the more exposed locations. A cool climate is interpreted to have prevailed throughout both cores. However, beneath c. 250 metres below sea floor in CRP-3, the dominant woody vegetation is supplemented by pockets of Palmae, ?Proteaceae and 'warm' climate grasses. This association represents vegetation growth in sheltered, moist sites - possibly north-facing mid-slopes or the coastal fringe. It may also represent remnant vegetation that grew in moist, temperate conditions during the Middle to Late Eocene, previously interpreted from the Southern McMurdo Sound erratics and lower part of the CIROS-1 drillhole. The phytolith analysis compares well to the terrestrial palynomorph record from both cores and provides additional independent taxonomic and climatic interpretations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A shallow gas depth-contour map covering the Skagerrak-western Baltic Sea region has been constructed using a relatively dense grid of existing shallow seismic lines. The digital map is stored as an ESRI shape file in order to facilitate comparison with other data from the region. Free gas usually occurs in mud and sandy mud but is observed only when sediment thickness exceeds a certain threshold value, depending on the water depth of the area in question. Gassy sediments exist at all water depths from approx. 20 m in the coastal waters of the Kattegat to 360 m in the Skagerrak. In spite of the large difference in water depths, the depth of free gas below seabed varies only little within the region, indicating a relatively fast movement of methane in the gas phase towards the seabed compared to the rate of diffusion of dissolved methane. Seeps of old microbial methane occur in the northern Kattegat where a relatively thin cover of sandy sediments exists over shallow, glacially deformed Pleistocene marine sediments. Previous estimates of total methane escape from the area may be correct but the extrapolation of local methane seepage rate data to much larger areas on the continental shelf is probably not justified. Preliminary data on porewater chemistry were compared with the free gas depth contours in the Aarhus Bay area, which occasionally suffers from oxygen deficiency, in order to examine if acoustic gas mapping may be used for monitoring the condition of the bay.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Hallstätter Glacier is the northernmost glacier of Austria. Appendant to the northern Limestone Alps, the glacier is located at 47°28'50'' N, 13°36'50'' E in the Dachstein-region. At the same time with its advance linked to the Little Ice Age (LIA), research on changes in size and mass of Hallstätter glacier was started in 1842 by Friedrich Simony. He observed and documented the glacier retreat related to its last maximum extension in 1856. In addition, Hallstätter Glacier is a subject to scientific research to date. In this thesis methods and results of ongoing mass balance measurements are presented and compared to long term volume changes and meteorological observations. The current mass balance monitoring programm using the direct glaciological method was started 2006. In this context, 2009 the ice thickness was measured with ground penetrating radar. The result are used with digital elevation models reconstucted from historical maps and recent digital elevation models to calculate changes in shape and volume of Hallstätter Glacier. Based on current meteorological measurements near the glacier and longtime homogenized climate data provided by HISTALP, time series of precipitation and temperature beginning at the LIA are produced. These monthly precipitation and monthly mean temperature data are used to compare results of a simple degree day model with the volume change calculated from the difference of the digital elevation models. The two years of direct mass balance measurements are used to calibrate the degree day model. A number of possible future scenarios are produced to indicate prospective changes. Within the 150-year-period between 1856 and 2007 the Hallstätter Glacier lost 1940 meters of its length and 2.23 km**2 in area. 37% of the initial volume of 1856 remained. This retreat came along with a change in climate. The application of a running avarage of 30 years shows an increase in precipitation of 18.5% and a warming of 1.3°C near the glacier between 1866 and 1993. The mass loss was continued in the hydrological years 2006/2007 and 2007/2008 showing mean specific mass balance of -376 mm and -700 mm, respectively. Applying a temperature correction for the different minimum elevations of the glacier, the degree day approach based on the two measured mass balances can reproduce sign and order of magnitude of the volume change of Hallstätter Glacier since 1856. Nevertheless, the relative deviation is significant. Future scenarios show, that 30% of the entire glacier volume remains after subtracting the elevation changes between the digital elevation models of 2002 and 2007 ten times from the surface of 2007. The past and present mass changes of Hallstätter Glacier are showing a retreating glacier as a consequence of rising temperatures. Due to high precepitation, increased with previous warming, the Hallstätter Glacier can and will exist in lower elevation compared to inner alpine glaciers.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Organisms in all domains, Archaea, Bacteria, and Eukarya will respond to climate change with differential vulnerabilities resulting in shifts in species distribution, coexistence, and interactions. The identification of unifying principles of organism functioning across all domains would facilitate a cause and effect understanding of such changes and their implications for ecosystem shifts. For example, the functional specialization of all organisms in limited temperature ranges leads us to ask for unifying functional reasons. Organisms also specialize in either anoxic or various oxygen ranges, with animals and plants depending on high oxygen levels. Here, we identify thermal ranges, heat limits of growth, and critically low (hypoxic) oxygen concentrations as proxies of tolerance in a meta-analysis of data available for marine organisms, with special reference to domain-specific limits. For an explanation of the patterns and differences observed, we define and quantify a proxy for organismic complexity across species from all domains. Rising complexity causes heat (and hypoxia) tolerances to decrease from Archaea to Bacteria to uni- and then multicellular Eukarya. Within and across domains, taxon-specific tolerance limits likely reflect ultimate evolutionary limits of its species to acclimatization and adaptation. We hypothesize that rising taxon-specific complexities in structure and function constrain organisms to narrower environmental ranges. Low complexity as in Archaea and some Bacteria provide life options in extreme environments. In the warmest oceans, temperature maxima reach and will surpass the permanent limits to the existence of multicellular animals, plants and unicellular phytoplankter. Smaller, less complex unicellular Eukarya, Bacteria, and Archaea will thus benefit and predominate even more in a future, warmer, and hypoxic ocean.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ocean Drilling Program Legs 170 and 205 offshore Costa Rica provide structural observations which support a new model for the geometry and deformation response to the seismic cycle of the frontal sedimentary prism and decollement. The model is based on drillcore, thin section, and electron microscope observations. The decollement damage zone is a few tens of meters in width, it develops mainly within the frontal prism. A clear cm-thick fault core is observed 1.6 km from the trench. The lower boundary of the fault core is coincident with the lithological boundary between the frontal prism and the hemipelagic and pelagic sediment of the Cocos plate. Breccia clast distributions in the upper portion of the decollement damage zone were studied through fractal analysis. This analysis shows that the fractal dimension changes with brecciated fragment size, implying that deformation was not accommodated by self-similar fracturing. A higher fractal dimensionality correlates with smaller particle size, which indicates that different or additional grain-size reduction processes operated during shearing. The co-existence of two distinct fracturing processes is also confirmed by microscopic analysis in which extension fracturing in the upper part of the damage zone farthest from the fault core is frequent, while both extension and shear fracturing occur approaching the fault core. The coexistence of extensional and shear fracturing seems to be best explained by fluid pressure variations in response to variations of the compressional regime during the seismic cycle. During the co-seismic event, sub-horizontal compression and fluid pressure increase, triggering shear fracturing and fluid expulsion. Fractures migrate upward with fluids, contributing to the asymmetric shape of the decollement, while slip propagates. In the inter-seismic interval the frontal prismrelaxes and fluid pressure drops. The frontal prismgoes into diffuse extension during the intervalwhen plate convergence is accommodated by creep along the ductile fault core. The fault core is typically a barrier to deformation, which is explained by its weak, but impermeable, nature. The localized development of a damage zone beneath the fault core is characterized by shear fracturing that appears as the result of local strengthening of the detachment.