10 resultados para distributed combination of classifiers
em Publishing Network for Geoscientific
Resumo:
The goal of our study is to determine accurate time series of geophysical Earth rotation excitations to learn more about global dynamic processes in the Earth system. For this purpose, we developed an adjustment model which allows to combine precise observations from space geodetic observation systems, such as Satellite Laser Ranging (SLR), Global Navigation Satellite Systems (GNSS), Very Long Baseline Interferometry (VLBI), Doppler Orbit determination and Radiopositioning Integrated on Satellite (DORIS), satellite altimetry and satellite gravimetry in order to separate geophysical excitation mechanisms of Earth rotation. Three polar motion time series are applied to derive the polar motion excitation functions (integral effect). Furthermore we use five time variable gravity field solutions from Gravity Recovery and Climate Experiment (GRACE) to determine not only the integral mass effect but also the oceanic and hydrological mass effects by applying suitable filter techniques and a land-ocean mask. For comparison the integral mass effect is also derived from degree 2 potential coefficients that are estimated from SLR observations. The oceanic mass effect is also determined from sea level anomalies observed by satellite altimetry by reducing the steric sea level anomalies derived from temperature and salinity fields of the oceans. Due to the combination of all geodetic estimated excitations the weaknesses of the individual processing strategies can be reduced and the technique-specific strengths can be accounted for. The formal errors of the adjusted geodetic solutions are smaller than the RMS differences of the geophysical model solutions. The improved excitation time series can be used to improve the geophysical modeling.
Resumo:
The Niveau Breistroffer black shale succession in the Vocontian Basin (SE France) is the regional equivalent of the widely distributed Late Albian Oceanic Anoxic Event 1d. The studied black shale-rich interval at the Col de Palluel section is 6.28 m thick and comprises four black shale units with up to 2.5 wt% total organic carbon (TOC) intercalated with marlstones. Calcareous nannofossil, palynomorph, planktic Foraminifera and stable isotopic data from the Niveau Breistroffer succession suggest that short-term climate changes influenced its deposition, with relatively warm and humid climate during black shale formation in comparison with relatively cool and dry climatic conditions during marlstone deposition. An increase in the terrigenous/marine ratio of palynomorphs indicates enhanced humidity and higher runoff during black shale formation. A nutrient index based on calcareous nannofossils and the abundance pattern of small (63-125 µm) hedbergellid Foraminifera show short-term changes in the productivity of the surface water. Surface-water productivity was reduced during black shale formation and increased during marlstone deposition. A calcareous nannofossil temperature index and bulk-rock oxygen isotope data indicate relative temperature changes, with warmer surface waters for black shale samples. At these times, warm-humid climate and reduced surface-water productivity were accompanied by greater abundances of 'subsurface'-dwelling calcareous nannofossils (nannoconids) and planktic Foraminifera (rotaliporids). These taxa presumably indicate more stratified surface-water conditions. We suggest that the formation of the Niveau Breistroffer black shales occurred during orbitally induced increase in monsoonal activity that led to increasing humidity during periods of black shale formation. This, in turn, caused a decrease in low-latitude deep-water formation and probably an increase in surface-water stratification. The combination of these two mechanisms caused depleted O2 concentrations in the bottom water that increased the preservation potential of organic matter
Resumo:
We report the northernmost and deepest known occurrence of deep-water pycnodontine oysters, based on two surveys along the French Atlantic continental margin to the La Chapelle continental slope (2006) and the Guilvinec Canyon (2008). The combined use of multibeam bathymetry, seismic profiling, CTD casts and a remotely operated vehicle (ROV) made it possible to describe the physical habitat and to assess the oceanographic control for the recently described species Neopycnodonte zibrowii. These oysters have been observed in vivo in depths from 540 to 846 m, colonizing overhanging banks or escarpments protruding from steep canyon flanks. Especially in the Bay of Biscay, such physical habitats may only be observed within canyons, where they are created by both long-term turbiditic and contouritic processes. Frequent observations of sand ripples on the seabed indicate the presence of a steady, but enhanced bottom current of about 40 cm/s. The occurrence of oysters also coincides with the interface between the Eastern North Atlantic Water and the Mediterranean Outflow Water. A combination of this water mass mixing, internal tide generation and a strong primary surface productivity may generate an enhanced nutrient flux, which is funnelled through the canyon. When the ideal environmental conditions are met, up to 100 individuals per m² may be observed. These deep-water oysters require a vertical habitat, which is often incompatible with the requirements of other sessile organisms, and are only sparsely distributed along the continental margins. The discovery of these giant oyster banks illustrates the rich biodiversity of deep-sea canyons and their underestimation as true ecosystem hotspots.
Resumo:
Seawater 87Sr/86Sr values increase abruptly by 28 * 10**-6 across the Cretaceous/Tertiary boundary (KTB). This small, but rapid shift is superimposed on the larger scale structure of the seawater Sr isotope curve. The time scale of radiogenic Sr addition appears to be too rapid to reconcile with sources associated with volcanism, and we show that the amount of Sr required to produce even this small increase is too large to be derived from: (1) a KT bolide of the size constrained by the Ir anomaly, (2) continental crust ejecta from the impact of such a bolide, (3) soot from global wildfires initiated by an impact, or (4) any combination of these sources. The probable source of the radiogenic Sr is enhanced continental weathering, but the high rate of increase appears to rule out processes such as sea level regression, glaciation or tectonism. A plausible mechanism for rapid addition of radiogenic Sr to the oceans is enhanced weathering associated with globally distributed acid rain (pH c. 1) which is a proposed by-product of a bolide impact (Prinn and Fegley, 1987, doi:10.1016/0012-821X(87)90046-X).
Resumo:
The DTRF2008 is a realization of the International Terrestrial Reference System ITRS. The DTRF2008 consists of station positions and velocities of global distributed observing stations of the space geodetic observation techniques VLBI, SLR, GPS and DORIS. The DTRF2008 was released in May 2010 and includes the observation data of the techniques up to and including 2008. The observation data are processed and submitted by the corresponding international services: IGS (International GNSS Service, http://igscb.jpl.nasa.gov) IVS (International VLBI Service, http://ivscc.gsfc.nasa.gov) ILRS (International Laser Ranging Service, http://ilrs.gsfc.nasa.gov) IDS (International DORIS Service, http://ids-doris.org). The DTRF2008 is an independent ITRS realization, which is computed on the basis of the same input data as the ITRF2008 (IGN, Paris). Both realizations differ with respect to their computation strategies: while the ITRF2008 is based on the combination of solutions, the DTRF2008 is computed by the combination of normal equations. The DTRF2008 comprises the coordinates of 559 GPS-, 106 VLBI-, 122 SLR- and 132 DORIS-stations. The reference epoch is 1.1.2005, 0h UTC. The Earth Orientation Parameters (EOP) - that means the coordinates of the terrestrial and the celestial pole, UT1-UTC and the Length of Day (LOD) - were simultaneously estimated with the station coordinates. The EOP time series cover the period of 1983 to 2008. The station names are the official IERS indications: cdp numbers or 4-character IDs and DOMES numbers (http://itrf.ensg.ign.fr/doc_ITRF/iers_sta_list.txt). The solution is available in different file formats (SINEX and SSC), see below. A detailed description of the solution is given by Seitz M. et al. (2012). The results of a comparison of DTRF2008 and ITRF2008 is given by Seitz M. et al. (2013). More information as well as residual time series of the station positions can be made available by request.
Resumo:
Sedimentological and biostratigraphic investigations of 15 cores (total length: 88 m) from the vicinity of Great Meteor seamount (about 30° N, 28° W) showed that the calcareous ooze are asymmetrically distributed around the seamount and vertically differentiated into two intervals. East and west of the seampunt, the upper "A"-interval is characterized by yellowish-brown sediment colors and bioturbation; ash layers and diatoms are restricted to the eastern cores. On both seamount flanks, the sediment of the lower "B"-interval are white and very rich in CaCO3 with a major fine silt (2-16 µ) mode (mainly coccoliths). Lamination, manganese micronodules, Tertiary foraminifera and discoasters, and small limestone and basalt fragments are typical of the "B"-interval of the eastern cores only. The sediments contain abundant displaced material which was reworked from the upper parts of the seamount. The sedimentation around the seamount is strongly influenced by the kind of displaced material and the intensity of its differentiated dispersal: the sedimentation rates are generally higher on the east than on the west flank /e.g. in "B": 0.9 cm/1000 y in the W; 3.1 cm/1000 y in the E), and lower for the "A" than for the "B"-interval. The lamination is explained by the combination of increased sedimentation rates with a strong input of material poor in organic carbon producing a hostile environment for benthic life. The CaCO3 content of the core is highly influenced by the proportion of displaced bigenous carbonate material (mainly coccoliths). The genuine in-situ conditions of the dissolution facies are only reflected by the minimum CaCO3 values of the cores (CCD = about 5,500 m; first bend in dissolution curve = 4,000 m; ACD = about 3,400 m). The preservation of the total foraminiferal association depends on the proportions of in-situ versus displaced specimens. In greater water depths (stronger dissolution), for example, the preservation can be improved by the admixture of relatively well preserved displaced foraminifera. Carbonate cementation and the formation of manganese micronodules are restricted to microenvironments with locally increased organic carbon contents (e.g. pellets; foraminifera). The ash layers consist of redeposited, silicic volcanic glass of trachytic composition and Mio-Pliocene age; possibly, they can be derived from the upper part of the seamount. Siliceous organisms, especially diatoms, are frequent close to the ash layers and probably also redeposited. Their preservation was favoured by the increase of the SiO2 content in the pore water caused by the silicic volcanic glass. The cores were biostraftsraphically subdivided with the aid of planktonic foraminifera and partly alsococcoliths. In most cases, the biostratigraphically determined cold- and warm sections could be correlated from core to core. Almost all cores do not penetrate the Late Pleistocene. All Tertiary fossils are reworked. In general, the warm/cold boundary W2/C2 corresponds with the lithostratigraphic A/B boundray. Benthonic foraminifera indicate the original site deposition of the displaced material (summit plateau or flanks of the seamount). The asymmetric distribution of the sediments around the seamount east and west of the NE-directed antarctic bottom current (AABW) is explained by the distortion of the streamlines by the Coriolis force; by this process the current velocity is increased west of the seamount and decreased east of it. The different proportion of displaced material within the "A" and "B" interval is explained by changes of the intensity of the oceanic circulation. At the time of "B" the flow of the AABW around the seamount was stronger than during "A"; this can be inferred from the presence of characteristic benthonic foraminifera. The increased oceanic circulation implies an enhanced differentiation of the current velocities, and by that, also of the sedimentation rates, and intensifies the winnowed sediment material was transported downslope by turbid layers into the deep-sea, incorporated into the current system of the AABW, and asymmetrically deposited around the seamount.
Resumo:
The gradually increased atmospheric CO2 partial pressure (pCO2) has thrown the carbonate chemistry off balance and resulted in decreased seawater pH in marine ecosystem, termed ocean acidification (OA). Anthropogenic OA is postulated to affect the physiology of many marine calcifying organisms. However, the susceptibility and metabolic pathways of change in most calcifying animals are still far from being well understood. In this work, the effects of exposure to elevated pCO2 were characterized in gills and hepatopancreas of Crassostrea gigas using integrated proteomic and metabolomic approaches. Metabolic responses indicated that high CO2 exposure mainly caused disturbances in energy metabolism and osmotic regulation marked by differentially altered ATP, glucose, glycogen, amino acids and organic osmolytes in oysters, and the depletions of ATP in gills and the accumulations of ATP, glucose and glycogen in hepatopancreas accounted for the difference in energy distribution between these two tissues. Proteomic responses suggested that OA could not only affect energy and primary metabolisms, stress responses and calcium homeostasis in both tissues, but also influence the nucleotide metabolism in gills and cytoskeleton structure in hepatopancreas. This study demonstrated that the combination of proteomics and metabolomics could provide an insightful view into the effects of OA on oyster C. gigas. BIOLOGICAL SIGNIFICANCE: The gradually increased atmospheric CO2 partial pressure (pCO2) has thrown the carbonate chemistry off balance and resulted in decreased seawater pH in marine ecosystem, termed ocean acidification (OA). Anthropogenic OA is postulated to affect the physiology of many marine calcifying organisms. However, the susceptibility and metabolic pathways of change in most calcifying animals are still far from being understood. To our knowledge, few studies have focused on the responses induced by pCO2 at both protein and metabolite levels. The pacific oyster C. gigas, widely distributed throughout most of the world's oceans, is a model organism for marine environmental science. In the present study, an integrated metabolomic and proteomic approach was used to elucidate the effects of ocean acidification on Pacific oyster C. gigas, hopefully shedding light on the physiological responses of marine mollusk to the OA stress.
Resumo:
Ascidians (Ascidiacea: Tunicata) are sessile suspension feeders that represent dominant epifaunal components of the Southern Ocean shelf benthos and play a significant role in the pelagic-benthic coupling. Here, we report the results of a first study on the relationship between the distribution patterns of eight common and/or abundant (putative) ascidian species, and environmental drivers in the waters off the northern Antarctic Peninsula. During RV Polarstern cruise XXIX/3 (PS81) in January-March 2013, we used seabed imaging surveys along 28 photographic transects of 2 km length each at water depths from 70 to 770 m in three regions (northwestern Weddell Sea, southern Bransfield Strait and southern Drake Passage), differing in their general environmental setting, primarily oceanographic characteristics and sea-ice dynamics, to comparatively analyze the spatial patterns in the abundance of the selected ascidians, reliably to be identified in the photographs, at three nested spatial scales. At a regional (100-km) scale, the ascidian assemblages of the Weddell Sea differed significantly from those of the other two regions, whereas at an intermediate 10-km scale no such differences were detected among habitat types (bank, upper slope, slope, deep/canyon) on the shelf and at the shelf break within each region. These spatial patterns were superimposed by a marked small-scale (10-m) patchiness of ascidian distribution within the 2-km-long transects. Among the environmental variables considered in our study, a combination of water-mass characteristics, sea-ice dynamics (approximated by 5-year averages in sea-ice cover in the region of or surrounding the photographic stations), as well as the seabed ruggedness, was identified as explaining best the distribution patterns of the ascidians.
Resumo:
We present a 5.3-Myr stack (the ''LR04'' stack) of benthic d18O records from 57 globally distributed sites aligned by an automated graphic correlation algorithm. This is the first benthic delta18O stack composed of more than three records to extend beyond 850 ka, and we use its improved signal quality to identify 24 new marine isotope stages in the early Pliocene. We also present a new LR04 age model for the Pliocene-Pleistocene derived from tuning the delta18O stack to a simple ice model based on 21 June insolation at 65 N. Stacked sedimentation rates provide additional age model constraints to prevent overtuning. Despite a conservative tuning strategy, the LR04 benthic stack exhibits significant coherency with insolation in the obliquity band throughout the entire 5.3 Myr and in the precession band for more than half of the record. The LR04 stack contains significantly more variance in benthic delta18O than previously published stacks of the late Pleistocene as the result of higher resolution records, a better alignment technique, and a greater percentage of records from the Atlantic. Finally, the relative phases of the stack's 41- and 23-kyr components suggest that the precession component of delta18O from 2.7-1.6 Ma is primarily a deep-water temperature signal and that the phase of d18O precession response changed suddenly at 1.6 Ma.
Resumo:
The DTRF2014 is a realization of the the fundamental Earth-fixed coordinate system, the International Terrestrial Reference System (ITRS). It has been computed by the Deutsches Geodätisches Forschungsinstitut der Technischen Universität München (DGFI-TUM). The DTRF2014 consists of station positions and velocities of 1712 globally distributed geodetic observing stations of the observation techniques VLBI, SLR, GNSS and DORIS. Additionally, for the first time, non-tidal atmospheric and hydrological loading is considered in the solution. The DTRF2014 was released in August 2016 and incorporates observation data of the four techniques up 2014. The observation data were processed and submitted by the corresponding technique services: IGS (International GNSS Service, http://igscb.jpl.nasa.gov) IVS (International VLBI Service, http://ivscc.gsfc.nasa.gov) ILRS (International Laser Ranging Service, http://ilrs.gsfc.nasa.gov) IDS (International DORIS Service, http://ids-doris.org). The DTRF2014 is an independent ITRS realization. It is computed on the basis of the same input data as the realizations JTRF2014 (JPL, Pasadena) and ITRF2014 (IGN, Paris). The three realizations of the ITRS differ conceptually. While DTRF2014 and ITRF2014 are based on station positions at a reference epoch and velocities, the JTRF2014 is based on time series of station positions. DTRF2014 and ITRF2014 result from different combination strategies: The ITRF2014 is based on the combination of solutions, the DTRF2014 is computed by the combination of normal equations. The DTRF2014 comprises 3D coordinates and coordinate changes of 1347 GNSS-, 113 VLBI-, 99 SLR- and 153 DORIS-stations. The reference epoch is 1.1.2005, 0h UTC. The Earth Orientation Parameters (EOP) - that means the coordinates of the terrestrial and the celestial pole, UT1-UTC and the Length of Day (LOD) - were simultaneously estimated with the station coordinates. The EOP time series cover the period from 1979.7 to 2015.0. The station names are the official IERS identifiers: CDP numbers or 4-character IDs and DOMES numbers (http://itrf.ensg.ign.fr/doc_ITRF/iers_sta_list.txt). The DTRF2014 solution is available in one comprehensive SINEX file and four technique-specific SINEX files, see below. A detailed description of the solution is given on the website of DGFI-TUM (http://www.dgfi.tum.de/en/science-data-products/dtrf2014/). More information can be made available by request.