114 resultados para discrete emotion

em Publishing Network for Geoscientific


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Molecular methods provide promising tools for routine detection and quantification of toxic microalgae in plankton samples. To this end, novel TaqMan minor groove binding probes and primers targeting the small (SSU) or large (LSU) ribosomal subunit (rRNA) were developed for two species of the marine dinoflagellate genus Alexandrium (A. minutum, A. tamutum) and for three groups/ribotypes of the A. tamarense species complex: Group I/North American (NA), Group II/Mediterranean (ME) and Group III/Western European (WE). Primers and probes for real-time quantitative PCR (qPCR) were species-specific and highly efficient when tested in qPCR assays for cross-validation with pure DNA from cultured Alexandrium strains. Suitability of the qPCR assays as molecular tools for the detection and estimation of relative cell abundances of Alexandrium species and groups was evaluated from samples of natural plankton assemblages along the Scottish east coast. The results were compared with inverted microscope cell counts (Utermöhl technique) of Alexandrium spp. and associated paralytic shellfish poisoning (PSP) toxin concentrations. The qPCR assays indicated that A. tamarense (Group I) and A. tamutum were the most abundant Alexandrium taxa and both were highly positively correlated with PSP toxin content of plankton samples. Cells of A. tamarense (Group III) were present at nearly all stations but in low abundance. Alexandrium minutum and A. tamarense (Group II) cells were not detected in any of the samples, thereby arguing for their absence from the specific North Sea region, at least at the time of the survey. The sympatric occurrence of A. tamarense Group I and Group III gives further support to the hypothesis that the groups/ribotypes of the A. tamarense species complex are cryptic species rather than variants belonging to the same species.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Schwalbenberg II loess-paleosol sequence (LPS) denotes a key site for Marine Isotope Stage (MIS 3) in Western Europe owing to eight succeeding cambisols, which primarily constitute the Ahrgau Subformation. Therefore, this LPS qualifies as a test candidate for the potential of temporal high-resolution geochemical data obtained X-ray fluorescence (XRF) scanning of discrete samplesproviding a fast and non-destructive tool for determining the element composition. The geochemical data is first contextualized to existing proxy data such as magnetic susceptibility (MS) and organic carbon (Corg) and then aggregated to element log ratios characteristic for weathering intensity [LOG (Ca/Sr), LOG (Rb/Sr), LOG (Ba/Sr), LOG (Rb/K)] and dust provenance [LOG (Ti/Zr), LOG (Ti/Al), LOG (Si/Al)]. Generally, an interpretation of rock magnetic particles is challenged in western Europe, where not only magnetic enhancement but also depletion plays a role. Our data indicates leaching and top-soil erosion induced MS depletion at the Schwalbenberg II LPS. Besides weathering, LOG (Ca/Sr) is susceptible for secondary calcification. Thus, also LOG (Rb/Sr) and LOG (Ba/Sr) are shown to be influenced by calcification dynamics. Consequently, LOG (Rb/K) seems to be the most suitable weathering index identifying the Sinzig Soils S1 and S2 as the most pronounced paleosols for this site. Sinzig Soil S3 is enclosed by gelic gleysols and in contrast to S1 and S2 only initially weathered pointing to colder climate conditions. Also the Remagen Soils are characterized by subtle to moderate positive excursions in the weathering indices. Comparing the Schwalbenberg II LPS with the nearby Eifel Lake Sediment Archive (ELSA) and other more distant German, Austrian and Czech LPS while discussing time and climate as limiting factors for pedogenesis, we suggest that the lithologically determined paleosols are in-situ soil formations. The provenance indices document a Zr-enrichment at the transition from the Ahrgau to the Hesbaye Subformation. This is explained by a conceptual model incorporating multiple sediment recycling and sorting effects in eolian and fluvial domains.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The major aim of this study was to examine the influence of an embedded viscoelastic-plastic layer at different viscosity values on accretionary wedges at subduction zones. To quantify the effects of the layer viscosity, we analysed the wedge geometry, accretion mode, thrust systems and mass transport pattern. Therefore, we developed a numerical 2D 'sandbox' model utilising the Discrete Element Method. Starting with a simple pure Mohr Coulomb sequence, we added an embedded viscoelastic-plastic layer within the brittle, undeformed 'sediment' package. This layer followed Burger's rheology, which simulates the creep behaviour of natural rocks, such as evaporites. This layer got thrusted and folded during the subduction process. The testing of different bulk viscosity values, from 1 × 10**13 to 1 × 10**14 (Pa s), revealed a certain range where an active detachment evolved within the viscoelastic-plastic layer that decoupled the over- and the underlying brittle strata. This mid-level detachment caused the evolution of a frontally accreted wedge above it and a long underthrusted and subsequently basally accreted sequence beneath it. Both sequences were characterised by specific mass transport patterns depending on the used viscosity value. With decreasing bulk viscosities, thrust systems above this weak mid-level detachment became increasingly symmetrical and the particle uplift was reduced, as would be expected for a salt controlled forearc in nature. Simultaneously, antiformal stacking was favoured over hinterland dipping in the lower brittle layer and overturning of the uplifted material increased. Hence, we validated that the viscosity of an embedded detachment strongly influences the whole wedge mechanics, both the respective lower slope and the upper slope duplex, shown by e.g. the mass transport pattern.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The track of the cruise, and the location of the different stations cover a large range of water masses, many of which take part in the exchange across the Greenland-Scotland Ridge, and of importance for the biogeochemical fluxes in the region. These water masses are of very different origins, which can be observed in the concentration of the different biogeochemical parameters. The concentrations are a result of the combination of the physical and biogeochemical environment in each formation region, and the processes acting on the water masses as they are transported away from the formation areas. The aim of the biogeochemistry measurements was to achieve a better understanding of the strength and variability of the biological carbon pump in the North Atlantic and Nordic Seas.