20 resultados para direct observations
em Publishing Network for Geoscientific
Resumo:
Breeding distribution of the Adelie penguin, Pygoscelis adeliae, was surveyed with Landsat-7 Enhanced Thematic Mapper Plus (ETM+) data along the coastline of Antarctica, an area covering approximately 330° of longitude. An algorithm was designed to minimize the radiometric contribution from exogenous sources and to retrieve Adelie penguin colony location and spatial extent from the ETM+ data. In all, 9143 individual pixels were classified as belonging to an Adelie penguin colony class out of the entire dataset of 195 ETM+ scenes, where the dimension of each pixel is 30 m by 30 m, and each scene is approximately 180 km by 180 km. Pixel clustering identified a total of 187 individual Adelie penguin colonies, ranging in size from a single pixel (900 m**2) to a maximum of 875 pixels (0.788 km**2). Colony retrievals have a very low error of commission, on the order of 1 percent or less, and the error of omission was estimated to be 2.9 percent by population based on comparisons with direct observations from surveys across east Antarctica. Thus, the Landsat retrievals can successfully locate Adelie penguin colonies that account for ~97 percent of a regional population. Geographic coordinates and the spatial extent of each colony retrieved from the Landsat data are available publically. Regional analysis found several areas where the Landsat retrievals suggest populations that are significantly larger than published estimates. Six Adelie penguin colonies were found that are believed to be unreported in the literature.
Resumo:
Pressing scientific questions concerning the Greenland ice sheet's climatic sensitivity, hydrology, and contributions to current and future sea level rise require hydrological datasets to resolve. While direct observations of ice sheet meltwater losses can be obtained in terrestrial rivers draining the ice sheet and from lake levels, few such datasets exist. We present a new dataset of meltwater river discharge for the vicinity of Kangerlussuaq, Southwest Greenland. The dataset contains measurements of river stage and discharge for three sites along the Akuliarusiarsuup Kuua (Watson) River's northern tributary, with 30 minute temporal resolution between June 2008 and August 2010. Additional data of water temperature, air pressure, and lake water depth and temperature are also provided. Discharge data were measured at sites with near-ideal properties for such data collection. Regardless, high water bedload and turbulent flow introduce considerable uncertainty. These were constrained and quantified using statistical techniques, thereby providing a high quality dataset from this important site. The greatest data uncertainties are associated with streambed elevation change and measurements. Large portions of stream channels deepened according to statistical tests, but poor precision of streambed depth measurements also added uncertainty. Quality checked data are freely available for scientific use as supplementary online material.
Resumo:
Physiological responses of larval stages can differ from those of the adults, affecting key ecological processes. Therefore, developing a mechanistic understanding of larval responses to environmental conditions is essential vis-à-vis climate change. We studied the thermal tolerance windows, defined by lower and upper pejus (Tp) and critical temperatures (Tc), of zoea I, II, and megalopa stages of the Chilean kelp crab Taliepus dentatus. Tp limits determine the temperature range where aerobic scope is maximal and functioning of the organism is unrestrained and were estimated from direct observations of larval activity. Tc limits define the transition from aerobic to anaerobic metabolism, and were estimated from the relationship between standard metabolic rate and temperature. Zoea I showed the broadest, Zoea II an intermediate, and megalopae the narrowest tolerance window (Tp). Optimum performance in megalopae was limited to Tp between 11 and 15°C, while their Tc ranged between 7 and 19°C. Although Tc may be seldom encountered by larvae, the narrower Tp temperatures can frequently expose larvae to unfavorable conditions that can drastically constrain their performance. Temperatures beyond the Tp range of megalopae have been observed in most spring and summer months in central Chile, and can have important consequences for larval swimming performance and impair their ability to avoid predators or settle successfully. Besides the well-documented effects of temperature on development time, variability in field temperatures beyond Tp can affect performance of particular larval stages, which could drive large-scale variability in recruitment and population dynamics of T. dentatus and possibly other invertebrate species.
Continuous meteorological observations in high-resolution (1Hz) at University of Oldenburg (2014-02)
Continuous meteorological observations in high-resolution (1Hz) at University of Oldenburg (2014-10)
Continuous meteorological observations in high-resolution (1Hz) at University of Oldenburg (2014-01)
Continuous meteorological observations in high-resolution (1Hz) at University of Oldenburg (2014-05)
Continuous meteorological observations in high-resolution (1Hz) at University of Oldenburg (2014-12)
Continuous meteorological observations in high-resolution (1Hz) at University of Oldenburg (2014-04)
Continuous meteorological observations in high-resolution (1Hz) at University of Oldenburg (2014-11)
Continuous meteorological observations in high-resolution (1Hz) at University of Oldenburg (2014-08)