2 resultados para direct methods

em Publishing Network for Geoscientific


Relevância:

60.00% 60.00%

Publicador:

Resumo:

The study of glacier fronts combines different geomatics measurement techniques as the classic survey using total station or theodolite, technical GNSS (Global Navigation Satellite System), using laser-scanner or using photogrammetry (air or ground). The measure by direct methods (classical surveying and GNSS) is useful and fast when accessibility to the glaciers fronts is easy, while it is practically impossible to realize, in the case of glacier fronts that end up in the sea (tide water glaciers). In this paper, a methodology that combines photogrammetric methods and other techniques for lifting the front of the glacier Johnsons, inaccessible is studied. The images obtained from the front, come from a non-metric digital camera; its georeferencing to a global coordinate system is performed by measuring points GNSS support in accessible areas of the glacier front side and applying methods of direct intersection in inaccessible points of the front, taking measurements with theodolite. The result of observations obtained were applied to study the temporal evolution (1957-2014) of the position of the Johnsons glacier front and the position of the Argentina, Las Palmas and Sally Rocks lobes front (Hurd glacier).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Many important chemical reactions occur in polar snow, where solutes may be present in several reservoirs, including at the air-ice interface and in liquid-like regions within the ice matrix. Some recent laboratory studies suggest chemical reaction rates may differ in these two reservoirs. While investigations have examined where solutes are found in natural snow and ice, similar research has not identified solute locations in laboratory samples, nor the possible factors controlling solute segregation. To address this, we examined solute locations in ice samples prepared from either aqueous cesium chloride (CsCl) or Rose Bengal solutions that were frozen using several different methods. Samples frozen in a laboratory freezer had the largest liquid-like inclusions and air bubbles, while samples frozen in a custom freeze chamber had somewhat smaller air bubbles and inclusions; in contrast, samples frozen in liquid nitrogen showed much smaller concentrated inclusions and air bubbles, only slightly larger than the resolution limit of our images (~2 µm). Freezing solutions in plastic versus glass vials had significant impacts on the sample structure, perhaps because the poor heat conductivity of plastic vials changes how heat is removed from the sample as it cools. Similarly, the choice of solute had a significant impact on sample structure, with Rose Bengal solutions yielding smaller inclusions and air bubbles compared to CsCl solutions frozen using the same method. Additional experiments using higher-resolution imaging of an ice sample show that CsCl moves in a thermal gradient, supporting the idea that the solutes in ice are present in liquid-like regions. Our work shows that the structure of laboratory ice samples, including the location of solutes, is sensitive to freezing method, sample container, and solute characteristics, requiring careful experimental design and interpretation of results.