3 resultados para differential index

em Publishing Network for Geoscientific


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The calcite compensation depth (CCD) fluctuates as a result of changes in the water-mass system, thereby producing a distinct dissolution pattern. Differential dissolution changes the composition of the foraminiferal assemblages, reflecting the depositional environment in respect to the fluctuating CCD. The dissolution pattern for the comparatively shallow Site 541 on the Barbados Ridge indicates a depositional environment mostly above the CCD, but below the foraminiferal lysocline during the late Miocene to early Pleistocene. In contrast, sediments of the deeper-water Site 543 indicate a depositional environment above the CCD during the late Pliocene to early Pleistocene only. Furthermore, similarities in the dissolution pattern of corresponding time intervals of Site 541 (represented by superimposed faulted intervals termed Tectonic Units A and B) are recognizable. Sediments deposited clearly above the foraminiferal lysocline are rare

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Drilling during Leg 167 at the California margin was scheduled to recover continuous sedimentary sections. Multiple advanced piston core (APC) holes drilled at different depth offsets provided core overlap in successive APCs. Correlation of high-resolution laboratory physical properties data from adjacent APC holes was used to compile composite depth sections for each site. The composite depth sections were used to confirm continuous recovery and enable high-resolution sampling. The meters composite depth (mcd) scale differs from the shipboard meters below seafloor (mbsf) scale because of (1) core expansion following recovery (MacKillop et al., 1995, doi:10.2973/odp.proc.sr.138.118.1995), (2) coring gaps, and (3) stretching/compression of sediment during coring (Lyle, Koizumi, Richter, et al., 1997, doi:10.2973/odp.proc.ir.167.1997). Moran (1997, doi:10.2973/odp.proc.sr.154.132.1997) calculated that sediment expansion accounted for 90%-95% of the Leg 154 depth offset between shipboard mbsf and the mcd scales. Terzaghi's one-dimensional theory of consolidation (Terzaghi, 1943) describes the response of sediments to stress loading and release. Mechanical loading in marine environments is provided by the buoyant weight of the overlying sediments. The load increases with depth below seabed, resulting in sediment volume reduction as water is "squeezed" out of the voids in the sediment. Stress release during core recovery results in expansion of the sediment and volume increase as water returns to the sediment. The sediment expansion or rebound defines the elastic properties of the sediment. In this study we examine the elastic deformation properties of sediments recovered from Sites 1020 and 1021. These results are used to (1) correct the laboratory index properties measurements to in situ values and (2) determine the contribution of sediment rebound to the depth offset between the mbsf and mcd scales.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A number of essential elements closely related to each other are involved in the Earth's climatic system. The temporal and spatial distribution of insolation determines wind patterns and the ocean's thermohaline pump. In turn, these last two are directly linked to the extension and retreat of marine and continental ice and to the chemistry of the atmosphere and the ocean. The variability of these elements may trigger, amplify, sustain or globalize rapid climatic changes. Paleoclimatic oscillations have been identified in this thesis by using fossil organic compounds synthesized by marine and terrestrial flora. High sedimentation rate deposits at the Barents and the Iberian peninsula continental margins were chosen in order to estimate the climatic changes on centennial time resolution. At the Barents margin, the sediment recovered was up to 15,000 years old (unit ''a'', from latin ''annos'') (M23258; west of the Bjørnøya island). At the Iberian margin, the sediment cores studied covered a wide range of time spans: up to 115,000 a (MD99-2343; north of the Minorca island), up to 250,000 a (ODP-977A; Alboran basin) and up to 420,000 a (MD01-2442, MD01-2443, MD01-2444, MD01-2445; close to the Tagus abyssal plain). At the northern site, inputs containing marine, continental and ancient reworked organic matter provided a detailed reconstruction of climate history at the time of the final retreat of the Barents ice sheet. At the western Barents continental slope, warm climatic conditions were observed during the early Holocene (~from 8,650 a to 5,240 a ago); in contrast, an apparent long-term cooling trend occurred in the late Holocene (~from 5,240 a to 760 a ago), in consistence with other paleoarchives from northern and southern European latitudes. The Iberian margin sites, which were never covered with large ice sheets, preserved exceptionally complete sequences of rapid events during ice ages hitherto not studied in such great detail: during the last glacial (~from 70,900 a to 11,800 a ago), the second glacial (~from 189,300 a to 127,500 a ago), the third ice age (~from 278,600 a to 244,800 a ago) and the fourth (~from 376,300 a to 337,500 a ago). In this thesis, crucial research questions were brought up concerning the severity of different glacial periods, the intensity and rates of the recorded oscillations and the long distance connections related to rapid climate change. The data obtained provide a sound basis to further research on the mechanisms involved in this rapid climate variability. An essential point of the research was the evidence that, over the past 420,000 a, at the whole Iberian margin, warm and stable long periods similar to the Holocene always ended abruptly in few centuries after a gradual deterioration of climate conditions. The detailed estimate of past climate variability provides clues to the natural end of the present warm period. Returning to an ice age in European lands would be exacerbated by a number of factors: a lack of differential solar heating between northern and southern north Atlantic latitudes, enhanced evaporation at low latitudes, and an increase in snowfall or iceberg discharges at northern regions. It must be emphasized that all climatic oscillations observed in this thesis were caused by forces of nature, i.e. the last two centuries were not taken into consideration.