2 resultados para dichotomous branching

em Publishing Network for Geoscientific


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Acropora is one of the largest taxonomic groups of scleractinian corals in the Indo-Pacific and contributes towards the establishment of coral communities in the Ryukyu Islands. Branching Acropora populations have a component of asexual reproduction; however, this may lead to a decline in genetic diversity, leaving populations vulnerable to environmental changes. Therefore, a sufficient supply of larvae produced via sexual reproduction is necessary to maintain genetic diversity in the branching Acropora communities. Fertilization success in branching Acropora depends on a variety of factors, including genetic and environmental conditions. How genotype and/or genetic compatibility drives fertilization rates in Acropora communities under natural conditions has not been investigated. To investigate how genotype and/or genetic compatibility determine fertilization rates in Acropora communities over the long-term, cross-mating experiments with branching Acropora using the same colonies were conducted from 2006 to 2011 in an aquarium. Acropora from cultured and natural colonies collected from a reef (26° 40' 19.2'' N, 127° 52' 40.8'' E) were used. Fertilization rates showed less variation within the same crossing combinations, but large variation across years for the same genotypes of focal colonies. Results indicated that fertilization rate was highly variable depending on genotype compatibility with different mating partners. Additionally, simulations of fertilization rates with increasing population size revealed that small populations that had low genetic diversity (fewer than 10 genotypes) failed to fertilize. These results support the establishment or maintenance of source populations that facilitate sufficient genetic diversity of branching Acropora to enhance coral community restoration.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ocean acidification (OA) threatens calcifying marine organisms including reef-building corals. In this study, we examined the OA responses of individual colonies of the branching scleractinian coral Montipora digitata. We exposed nubbins of unique colonies (n = 15) to ambient or elevated pCO2 under natural light and temperature regimes for 110 days. Although elevated pCO2 exposure on average reduced calcification, individual colonies showed unique responses ranging from declines in positive calcification to negative calcification (decalcification) to no change. Similarly, mortality was greater on average in elevated pCO2, but also showed colony-specific patterns. High variation in colony responses suggests the possibility that ongoing OA may lead to natural selection of OA-tolerant colonies within a coral population.