17 resultados para delineation
em Publishing Network for Geoscientific
Resumo:
Since being first discovered in the Blake-Bahama region of the west Atlantic in the 1970s (Hollister, Ewing, et al., 1972, doi:10.2973/dsdp.proc.11.1972), submarine gas hydrates have been identified in the continental margin worldwide. Ocean Drilling Program (ODP) Leg 164 was the first drilling designated to study the occurrence and distribution of natural gas hydrates in Blake Ridge where a well developed, distinct BSR (Bottom Simulating Reflector) has been identified (Paull, Matsumoto, Wallace, et al., 1996, doi:10.2973/odp.proc.ir.164.1996). It has been reported there is a prominent discrepancy between the BSR and the base of gas hydrate stability (Paull, Matsumoto, Wallace, et al., 1996, doi:10.2973/odp.proc.ir.164.1996; Ruppel, 1997, doi:10.1130/0091-7613(1997)025<0699:ACTOAT>2.3.CO;2), though theoretically they should be at the same depth. Natural gas hydrate in marine sediments coexists with sediment particles, so detailed delineation of sediment geochemistry will be of benefit to solve this apparent discrepancy. The main objectives of this study are to supply background data of the major chemical compositions of sediments from a hydrated sediment section.
Resumo:
With full-waveform (FWF) lidar systems becoming increasingly available from different commercial manufacturers, the possibility for extracting physical parameters of the scanned surfaces in an area-wide sense, as addendum to their geometric representation, has risen as well. The mentioned FWF systems digitize the temporal profiles of the transmitted laser pulse and of its backscattered echoes, allowing for a reliable determination of the target distance to the instrument and of physical target quantities by means of radiometric calibration, one of such quantities being the diffuse Lambertian reflectance. The delineation of glaciers is a time-consuming task, commonly performed manually by experts and involving field trips as well as image interpretation of orthophotos, digital terrain models and shaded reliefs. In this study, the diffuse Lambertian reflectance was compared to the glacier outlines mapped by experts. We start the presentation with the workflow for analysis of FWF data, their direct georeferencing and the calculation of the diffuse Lambertian reflectance by radiometric calibration; this workflow is illustrated for a large FWF lidar campaign in the Ötztal Alps (Tyrol, Austria), operated with an Optech ALTM 3100 system. The geometric performance of the presented procedure was evaluated by means of a relative and an absolute accuracy assessment using strip differences and orthophotos, resp. The diffuse Lambertian reflectance was evaluated at two rock glaciers within the mentioned lidar campaign. This feature showed good performance for the delineation of the rock glacier boundaries, especially at their lower parts.
Resumo:
The chronostratigraphy of Guandao section has served as the foundation for numerous studies of the end-Permian extinction and biotic recovery in south China. Guandao section is continuous from the Permian-Triassic boundary to the Upper Triassic.Conodonts enable broad delineation of stage and substage boundaries and calibration of foraminifer biostratigraphy as follows. Changhsingian- Griesbachian: first Hindeodus parvus, and first appearance of foraminifers Postcladella kalhori and Earlandia sp. Griesbachian-Dienerian: first Neospathodus dieneri, and last appearance of foraminifer P. grandis. Dienerian-Smithian: first Novispathodus waageni and late Dienerian first appearance of foraminifer Hoyenella ex gr. sinensis. Smithian-Spathian: first Nv? crassatus and last appearance of foraminifers Arenovidalina n. sp. and Glomospirella cf. vulgaris. Spathian-Aegean: first Chiosella timorensis and first appearance of foraminifer Meandrospira dinarica. Aegean-Bithynian: first Nicoraella germanica and first appearance of foraminifer Pilammina densa. Bithynian-Pelsonian: after last Neogondolella regalis, prior to first Paragondolella bulgarica and first appearance of foraminifer Aulotortus eotriasicus. Pelsonian-Illyrian: first Pg. excelsa and last appearance of foraminifers Meandrospira ? deformata and Pilamminella grandis. Illyrian-Fassanian: first Budurovignathus truempyi, and first appearance of foraminifers Abriolina mediterranea and Paleolituonella meridionalis. Fassanian-Longobardian: first Bv. mungoensis and last appearance of foraminifer A. mediterranea. Longobardian-Cordevolian: first Quadralella polygnathiformis and last appearance of foraminifers Turriglomina mesotriasica and Endotriadella wirzi. The section contains primary magnetic signature with frequent reversals occurring around the Permian-Triassic, Olenekian-Anisian, and Anisian-Ladinian boundaries. Predominantly normal polarity occurs in the lower Smithian, Bithynian, and Longobardian-Cordevolian. Predominantly reversed polarity occurs in the upper Griesbachian, Induan-Olenekian, Pelsonian and lower Illyrian. Reversals match well with the GPTS. Large amplitude carbon isotope excursions, attaining values as low as -2.9 per mil d13C and high as +5.7 per mil d13C, characterize the Lower Triassic and basal Anisian. Values stabilize around +2 per mil d13C through the Anisian to Carnian. Similar signatures have been reported globally. Magnetic susceptibility and synthetic gamma ray logs show large fluctuations in the Lower Triassic and an overall decline in magnitude of fluctuation through the Middle and Upper Triassic. The largest spikes in magnetic susceptibility and gamma ray, indicating greater terrestrial lithogenic flux, correspond to positive d13C excursions. Several volcanic ash horizons occur in the Lower Triassic and Olenekian-Anisian boundary. High resolution U-Pb analysis of zircons provide a robust age of 247.2 Ma for the Olenekian-Anisian boundary.
Resumo:
A new digital bathymetric model (DBM) for the Northeast Greenland (NEG) continental shelf (74°N - 81°N) is presented. The DBM has a grid cell size of 250 m × 250 m and incorporates bathymetric data from 30 multibeam cruises, more than 20 single-beam cruises and first reflector depths from industrial seismic lines. The new DBM substantially improves the bathymetry compared to older models. The DBM not only allows a better delineation of previously known seafloor morphology but, in addition, reveals the presence of previously unmapped morphological features including glacially derived troughs, fjords, grounding-zone wedges, and lateral moraines. These submarine landforms are used to infer the past extent and ice-flow dynamics of the Greenland Ice Sheet during the last full-glacial period of the Quaternary and subsequent ice retreat across the continental shelf. The DBM reveals cross-shelf bathymetric troughs that may enable the inflow of warm Atlantic water masses across the shelf, driving enhanced basal melting of the marine-terminating outlet glaciers draining the ice sheet to the coast in Northeast Greenland. Knolls, sinks, and hummocky seafloor on the middle shelf are also suggested to be related to salt diapirism. North-south-orientated elongate depressions are identified that probably relate to ice-marginal processes in combination with erosion caused by the East Greenland Current. A single guyot-like peak has been discovered and is interpreted to have been produced during a volcanic event approximately 55 Ma ago.
Resumo:
The concept of homogenous response units (HRU) was designed as a general concept for the delineation of basic spatial units. Only those characteristics of landscape, which are relatively stable over time (even under climate change) and largely unsusceptible to anthropogenic influence, were selected. The HRU can be seen as a basic spatial framework for the implementation of climate change and land management alternative scenarios into global modeling and therefore is a basic input for delineation of landscape units. HRUs are defined based on classifications of altitude (five classes: 1 (0 - 300m), 2 (300 - 600m), 3 (600 - 1100m), 4 (1100 - 2500m), 5 (> 2500m)), slope (seven classes(degrees): 1 (0 - 3), 2 (3 - 6), 3 (6 - 10), 4 (10 - 15), 5 (15 - 30), 6 (30 - 50), 7 (> 50)) and soil composition (five classes: 1 (sandy), 2 (loamy), 3 (clay), 4 (stony), 5 (peat)). e.g. HRU111 refers to Altitude class 1: 0-300m; Slope class 1: 0-3 degrees; and Soil class 1: sandy. Areas of non-soil are assigned 88. HRUs have a spatial resolution of approximately 10 km**2.
Resumo:
Three of the six DSDP Leg 77 sites drilled in the western approaches to the Straits of Florida yielded thick sequences of Cenozoic sediment rich in calcareous nannofossils. Hiatuses are prominent in each of these continuously cored intervals. A prominent upper Oligocene hiatus, observed at each of these three sites, can be correlated to a large-scale "global" regression event. Other disconformable horizons present in the study area cannot be positively related to sealevel fluctuations and may be caused by a number of factors including local tectonic activity. Paleogene sections are generally marked by thick accumulations within the upper Oligocene Sphenolithus ciperoensis Zone and by a pronounced braarudosphaerid-holococcolith bloom recorded in the lower Oligocene and upper Eocene. This bloom is particularly well developed at Site 540. All samples examined contain abundant nannofossils. Preservation fluctuates throughout the sections from good to poor.
Resumo:
The episodic occurrence of debris flow events in response to stochastic precipitation and wildfire events makes hazard prediction challenging. Previous work has shown that frequency-magnitude distributions of non-fire-related debris flows follow a power law, but less is known about the distribution of post-fire debris flows. As a first step in parameterizing hazard models, we use frequency-magnitude distributions and cumulative distribution functions to compare volumes of post-fire debris flows to non-fire-related debris flows. Due to the large number of events required to parameterize frequency-magnitude distributions, and the relatively small number of post-fire event magnitudes recorded in the literature, we collected data on 73 recent post-fire events in the field. The resulting catalog of 988 debris flow events is presented as an appendix to this article. We found that the empirical cumulative distribution function of post-fire debris flow volumes is composed of smaller events than that of non-fire-related debris flows. In addition, the slope of the frequency-magnitude distribution of post-fire debris flows is steeper than that of non-fire-related debris flows, evidence that differences in the post-fire environment tend to produce a higher proportion of small events. We propose two possible explanations: 1) post-fire events occur on shorter return intervals than debris flows in similar basins that do not experience fire, causing their distribution to shift toward smaller events due to limitations in sediment supply, or 2) fire causes changes in resisting and driving forces on a package of sediment, such that a smaller perturbation of the system is required in order for a debris flow to occur, resulting in smaller event volumes.
Resumo:
These data are provided to allow users for reproducibility of an open source tool entitled 'automated Accumulation Threshold computation and RIparian Corridor delineation (ATRIC)'
Resumo:
Understanding species distribution patterns and the corresponding environmental determinants is a crucial step in the development of effective strategies for the conservation and management of plant communities and ecosystems. Therefore, a central prerequisite is the biogeographical and macroecological analysis of factors and processes that determine contemporary, potential, as well as future geographic distribution of species. This thesis has been conducted in the framework of the BIOMAPS-BIOTA project at the Nees Institute of Biodiversity of Plants, which was funded by the German Federal Ministry of Education and Research (BMBF). The study investigated patterns of plants species richness and phytogeographic regions under contemporary environmental conditions and forecasted future climate change in the area of West Africa covering five countries: Benin, Burkina Faso, Côte d'Ivoire, Ghana and Togo. Firstly, geographic patterns of vascular plant species richness have been depicted at a relatively fine spatial resolution based on the potential distribution of 3,393 species. Species richness is closely related to the steep climatic gradient existing in the region with a high concentration of species in the most humid areas in the south and decreases towards the northern drier areas. The investigation of the effectiveness of the existing network of protected areas shows an overall good coverage of species in the study area. However, the proportion of covered species is considerably lower at national extent for some countries, thus calling for more protected areas in order to cover adequately a maximum number of plants species in these countries. Secondly, based on the potential distribution range of vascular plant species, seven phytogeographic regions have been delineated that broadly reflect the vegetation zones as defined by White (1983). However notable differences to the delineation of White (1983) occur at the margins of some regions. Corresponding to a general southward shifted of all regions. And expansion of the Sahel vegetation zone is observed in the north, while the rainforest zone is decreased in the very south.This is alarming since the rainforest shelters a high number of species and a high proportion of range-restricted or endemic species, despite their relatively small extent compared to the other regions. Finally, the evaluation of the potential impact of climate change on plant species richness in the study area, results in a severe loss of future suitable habitat for up to 50% of species per grid cell, particularly in the rainforest region. Moreover, the analysis of the possible shift of phytogeographic regions shows in general a strong deterioration of the West African rainforest. In contrast the drier areas are expanding continuously, although a slight gain in species number can be observed in some particular regions. The overall lesson to retain from the results of this study is that the West African rainforest should be fixed as a high priority area for the conservation of biodiversity of plants, since it is subject to severe contemporary and projected future threats.