10 resultados para decalcification

em Publishing Network for Geoscientific


Relevância:

10.00% 10.00%

Publicador:

Resumo:

We investigated ecological, physiological, and skeletal characteristics of the calcifying green alga Halimeda grown at CO2 seeps (pHtotal ? 7.8) and compared them to those at control reefs with ambient CO2 conditions (pHtotal ? 8.1). Six species of Halimeda were recorded at both the high CO2 and control sites. For the two most abundant species Halimeda digitata and Halimeda opuntia we determined in situ light and dark oxygen fluxes and calcification rates, carbon contents and stable isotope signatures. In both species, rates of calcification in the light increased at the high CO2 site compared to controls (131% and 41%, respectively). In the dark, calcification was not affected by elevated CO2 in H. digitata, whereas it was reduced by 167% in H. opuntia, suggesting nocturnal decalcification. Calculated net calcification of both species was similar between seep and control sites, i.e., the observed increased calcification in light compensated for reduced dark calcification. However, inorganic carbon content increased (22%) in H. digitata and decreased (-8%) in H. opuntia at the seep site compared to controls. Significantly, lighter carbon isotope signatures of H. digitata and H. opuntia phylloids at high CO2 (1.01 per mil [parts per thousand] and 1.94 per mil, respectively) indicate increased photosynthetic uptake of CO2 over HCO3- potentially reducing dissolved inorganic carbon limitation at the seep site. Moreover, H. digitata and H. opuntia specimens transplanted for 14 d from the control to the seep site exhibited similar delta13C signatures as specimens grown there. These results suggest that the Halimeda spp. investigated can acclimatize and will likely still be capable to grow and calcify in inline image conditions exceeding most pessimistic future CO2 projections.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Anthropogenic increases in the partial pressure of CO2 (pCO2) cause ocean acidification, declining calcium carbonate saturation states, reduced coral reef calcification and changes in the compositions of marine communities. Most projected community changes due to ocean acidification describe transitions from hard coral to non-calcifying macroalgal communities; other organisms have received less attention, despite the biotic diversity of coral reef communities. We show that the spatial distributions of both hard and soft coral communities in volcanically acidified, semi-enclosed waters off Iwotorishima Island, Japan, are related to pCO2 levels. Hard corals are restricted to non-acidified low- pCO2 (225 µatm) zones, dense populations of the soft coral Sarcophyton elegans dominate medium- pCO2 (831 µatm) zones, and both hard and soft corals are absent from the highest- pCO2 (1,465 µatm) zone. In CO2-enriched culture experiments, high- pCO2 conditions benefited Sarcophyton elegans by enhancing photosynthesis rates and did not affect light calcification, but dark decalcification (negative net calcification) increased with increasing pCO2. These results suggest that reef communities may shift from reef-building hard corals to non-reef-building soft corals under pCO2 levels (550-970 µatm) predicted by the end of this century, and that higher pCO2 levels would challenge the survival of some reef organisms.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Despite the potential impact of ocean acidification on ecosystems such as coral reefs, surprisingly, there is very limited field data on the relationships between calcification and seawater carbonate chemistry. In this study, contemporaneous in situ datasets of seawater carbonate chemistry and calcification rates from the high-latitude coral reef of Bermuda over annual timescales provide a framework for investigating the present and future potential impact of rising carbon dioxide (CO2) levels and ocean acidification on coral reef ecosystems in their natural environment. A strong correlation was found between the in situ rates of calcification for the major framework building coral species Diploria labyrinthiformis and the seasonal variability of [CO32-] and aragonite saturation state omega aragonite, rather than other environmental factors such as light and temperature. These field observations provide sufficient data to hypothesize that there is a seasonal "Carbonate Chemistry Coral Reef Ecosystem Feedback" (CREF hypothesis) between the primary components of the reef ecosystem (i.e., scleractinian hard corals and macroalgae) and seawater carbonate chemistry. In early summer, strong net autotrophy from benthic components of the reef system enhance [CO32-] and omega aragonite conditions, and rates of coral calcification due to the photosynthetic uptake of CO2. In late summer, rates of coral calcification are suppressed by release of CO2 from reef metabolism during a period of strong net heterotrophy. It is likely that this seasonal CREF mechanism is present in other tropical reefs although attenuated compared to high-latitude reefs such as Bermuda. Due to lower annual mean surface seawater [CO32-] and omega aragonite in Bermuda compared to tropical regions, we anticipate that Bermuda corals will experience seasonal periods of zero net calcification within the next decade at [CO32-] and omega aragonite thresholds of ~184 micro moles kg-1 and 2.65. However, net autotrophy of the reef during winter and spring (as part of the CREF hypothesis) may delay the onset of zero NEC or decalcification going forward by enhancing [CO32-] and omega aragonite. The Bermuda coral reef is one of the first responders to the negative impacts of ocean acidification, and we estimate that calcification rates for D. labyrinthiformis have declined by >50% compared to pre-industrial times.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Predicting the impacts of ocean acidification on coastal ecosystems requires an understanding of the effects on macroalgae and their grazers, as these underpin the ecology of rocky shores. Whilst calcified coralline algae (Rhodophyta) appear to be especially vulnerable to ocean acidification, there is a lack of information concerning calcified brown algae (Phaeophyta), which are not obligate calcifiers but are still important producers of calcium carbonate and organic matter in shallow coastal waters. Here, we compare ecological shifts in subtidal rocky shore systems along CO2 gradients created by volcanic seeps in the Mediterranean and Papua New Guinea, focussing on abundant macroalgae and grazing sea urchins. In both the temperate and tropical systems the abundances of grazing sea urchins declined dramatically along CO2 gradients. Temperate and tropical species of the calcifying macroalgal genus Padina (Dictyoaceae, Phaeophyta) showed reductions in CaCO3 content with CO2 enrichment. In contrast to other studies of calcified macroalgae, however, we observed an increase in the abundance of Padina spp. in acidified conditions. Reduced sea urchin grazing pressure and significant increases in photosynthetic rates may explain the unexpected success of decalcified Padina spp. at elevated levels of CO2. This is the first study to provide a comparison of ecological changes along CO2 gradients between temperate and tropical rocky shores. The similarities we found in the responses of Padina spp. and sea urchin abundance at several vent systems increases confidence in predictions of the ecological impacts of ocean acidification over a large geographical range.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Coral reefs are characterized by enormous carbonate production of the organisms. It is known that rapid calcification is linked to photosynthesis under control of the carbonate equilibrium in seawater. We have established a model simulating the coexisting states of photosynthesis and calcification in order to examine the effects of photosynthesis and calcification on the carbonate system in seawater. Supposing that the rates of photosynthesis and calcification are proportional to concentrations of their inorganic carbon source, the model calculations indicate that three kinds of unique interactions of the organic and inorganic carbon productions are expected. These are photosynthetic enhancement of calcification, calcification which benefits photosynthesis and carbonate dissolution induced by respiration. The first effect appears when the photosynthetic rate is more than approximately 1.2 larger than that of calcification. This effect is caused by the increase of CO3 content and carbonate saturation degree in seawater. If photosynthesis use molecular carbon dioxide, the second effect occurs when the calcification rate is more than approximately 1.6 times larger than that of photosynthesis. Time series model experiments indicate that photosynthesis and calcification potentially enhance each other and that organic and inorganic carbon is produced more efficiently in the coexisting system than in the isolated reactions. These coexisting effects on production enhancement of photosynthesis and calcification are expected to appear not only in the internal pool of organisms but also in a reef environment which is isolated from the outer ocean during low tide. According to the measurements on the fringing type Shiraho Reef in the Ryukyu Islands, the diurnal change of water properties (pH, total alkalinity, total carbon dioxide and carbonate saturation degree) were conspicuous. This environment offers an appropriate condition for the appearance of these coexisting effects. The photosynthetic enhancement of calcification and the respiratory inducement of decalcification were observed during day-time and night-time slack-water periods, respectively. These coexisting effects, especially the photosynthetic enhancement of calcification, appear to play important roles for fluorishing coral reef communities.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Despite the potential impact of ocean acidification on ecosystems such as coral reefs, surprisingly, there is very limited field data on the relationships between calcification and seawater carbonate chemistry. In this study, contemporaneous in situ datasets of seawater carbonate chemistry and calcification rates from the high-latitude coral reef of Bermuda over annual timescales provide a framework for investigating the present and future potential impact of rising carbon dioxide (CO2) levels and ocean acidification on coral reef ecosystems in their natural environment. A strong correlation was found between the in situ rates of calcification for the major framework building coral species Diploria labyrinthiformis and the seasonal variability of [CO32-] and aragonite saturation state omega aragonite, rather than other environmental factors such as light and temperature. These field observations provide sufficient data to hypothesize that there is a seasonal "Carbonate Chemistry Coral Reef Ecosystem Feedback" (CREF hypothesis) between the primary components of the reef ecosystem (i.e., scleractinian hard corals and macroalgae) and seawater carbonate chemistry. In early summer, strong net autotrophy from benthic components of the reef system enhance [CO32-] and omega aragonite conditions, and rates of coral calcification due to the photosynthetic uptake of CO2. In late summer, rates of coral calcification are suppressed by release of CO2 from reef metabolism during a period of strong net heterotrophy. It is likely that this seasonal CREF mechanism is present in other tropical reefs although attenuated compared to high-latitude reefs such as Bermuda. Due to lower annual mean surface seawater [CO32-] and omega aragonite in Bermuda compared to tropical regions, we anticipate that Bermuda corals will experience seasonal periods of zero net calcification within the next decade at [CO32-] and omega aragonite thresholds of ~184 micro moles kg-1 and 2.65. However, net autotrophy of the reef during winter and spring (as part of the CREF hypothesis) may delay the onset of zero NEC or decalcification going forward by enhancing [CO32-] and omega aragonite. The Bermuda coral reef is one of the first responders to the negative impacts of ocean acidification, and we estimate that calcification rates for D. labyrinthiformis have declined by >50% compared to pre-industrial times.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The exponential growth of studies on the biological response to ocean acidification over the last few decades has generated a large amount of data. To facilitate data comparison, a data compilation hosted at the data publisher PANGAEA was initiated in 2008 and is updated on a regular basis (doi:10.1594/PANGAEA.149999). By January 2015, a total of 581 data sets (over 4 000 000 data points) from 539 papers had been archived. Here we present the developments of this data compilation five years since its first description by Nisumaa et al. (2010). Most of study sites from which data archived are still in the Northern Hemisphere and the number of archived data from studies from the Southern Hemisphere and polar oceans are still relatively low. Data from 60 studies that investigated the response of a mix of organisms or natural communities were all added after 2010, indicating a welcomed shift from the study of individual organisms to communities and ecosystems. The initial imbalance of considerably more data archived on calcification and primary production than on other processes has improved. There is also a clear tendency towards more data archived from multifactorial studies after 2010. For easier and more effective access to ocean acidification data, the ocean acidification community is strongly encouraged to contribute to the data archiving effort, and help develop standard vocabularies describing the variables and define best practices for archiving ocean acidification data.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ocean acidification (OA) threatens calcifying marine organisms including reef-building corals. In this study, we examined the OA responses of individual colonies of the branching scleractinian coral Montipora digitata. We exposed nubbins of unique colonies (n = 15) to ambient or elevated pCO2 under natural light and temperature regimes for 110 days. Although elevated pCO2 exposure on average reduced calcification, individual colonies showed unique responses ranging from declines in positive calcification to negative calcification (decalcification) to no change. Similarly, mortality was greater on average in elevated pCO2, but also showed colony-specific patterns. High variation in colony responses suggests the possibility that ongoing OA may lead to natural selection of OA-tolerant colonies within a coral population.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Results from a large scale soil mapping on the North Frisian mainland indicate, that field characteristics, particularly the grain-size, bedding, and degree of compaction, with in general determine the soil units mapped, are closely correlated with each other and with other field and laboratory data. Exchangable ions and the Ca/Mg-ratio, however, indicate no explainable connections with the soil units and with most of the other field characteristics but are determined postsedimentarily by processes of the development of soil and landscape, such as desalting and decalcification, silicate weathering, fresh- and salt-water innundations, salty precipitations, salty groundwater and fertilization. Therefore the Ca/Mg-ratio is not suitable to differentiate between more clayey compacted Knick-marsh soils and less clayey permeable Klei-marsh soils. The results confirm that marsh-soils may only be classified and mapped by means of all available field-data which have to be supplemented by laboratory investigations.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Despite the potential impact of ocean acidification on ecosystems such as coral reefs, surprisingly, there is very limited field data on the relationships between calcification and seawater carbonate chemistry. In this study, contemporaneous in situ datasets of seawater carbonate chemistry and calcification rates from the high-latitude coral reef of Bermuda over annual timescales provide a framework for investigating the present and future potential impact of rising carbon dioxide (CO2) levels and ocean acidification on coral reef ecosystems in their natural environment. A strong correlation was found between the in situ rates of calcification for the major framework building coral species Diploria labyrinthiformis and the seasonal variability of [CO32-] and aragonite saturation state omega aragonite, rather than other environmental factors such as light and temperature. These field observations provide sufficient data to hypothesize that there is a seasonal "Carbonate Chemistry Coral Reef Ecosystem Feedback" (CREF hypothesis) between the primary components of the reef ecosystem (i.e., scleractinian hard corals and macroalgae) and seawater carbonate chemistry. In early summer, strong net autotrophy from benthic components of the reef system enhance [CO32-] and omega aragonite conditions, and rates of coral calcification due to the photosynthetic uptake of CO2. In late summer, rates of coral calcification are suppressed by release of CO2 from reef metabolism during a period of strong net heterotrophy. It is likely that this seasonal CREF mechanism is present in other tropical reefs although attenuated compared to high-latitude reefs such as Bermuda. Due to lower annual mean surface seawater [CO32-] and omega aragonite in Bermuda compared to tropical regions, we anticipate that Bermuda corals will experience seasonal periods of zero net calcification within the next decade at [CO32-] and omega aragonite thresholds of ~184 micro moles kg-1 and 2.65. However, net autotrophy of the reef during winter and spring (as part of the CREF hypothesis) may delay the onset of zero NEC or decalcification going forward by enhancing [CO32-] and omega aragonite. The Bermuda coral reef is one of the first responders to the negative impacts of ocean acidification, and we estimate that calcification rates for D. labyrinthiformis have declined by >50% compared to pre-industrial times.