65 resultados para datasets
em Publishing Network for Geoscientific
Resumo:
The potential effects of ocean warming on marine predators are largely unknown, though the impact on the distribution of prey in vertical space may have far reaching impacts on diving predators such as southern elephant seals. We used data from satellite-tracked southern elephant seals from Marion Island to investigate the relationship between their dive characteristics (dive depths, dive durations and time-at-depth index values) and environmental variables (temperature at depth, depth of maximum temperature below 100 m, frontal zone and bathymetry) as well as other demographic and behavioural variables (migration stage, age-class, track day and vertical diel strategy). While other variables, such as bathymetry and vertical diel strategy also influenced dive depth, our results consistently indicated a significant influence of temperature at depth on dive depths. This relationship was positive for all groups of animals, indicating that seals dived to deeper depths when foraging in warmer waters. Female seals adjusted their dive depths proportionally more than males in warmer water. Dive durations were also influenced by temperature at depth, though to a lesser extent. Results from time-at-depth indices showed that both male and female seals spent less time at targeted dive depths in warmer water, and were presumably less successful foragers when diving in warmer water. Continued warming of the Southern Ocean may result in the distribution of prey for southern elephant seals shifting either poleward and/or to increasing depths. Marion Island elephant seals are expected to adapt their ranging and diving behaviour accordingly, though such changes may result in greater physiological costs associated with foraging.
Resumo:
Although numerous studies have addressed the migration and dive behaviour of southern elephant seals (Mirounga leonina), questions remain about their habitat use in the marine environment. We report on the vertical use of the water column in the species and the potential lifetime implications for southern elephant seals from Marion Island. Long-term mark-resight data were used to complement vertical habitat use for 35 known individuals tagged with satellite-relay data loggers, resulting in cumulative depth use extrapolated for each individual over its estimated lifespan. Seals spent on average 77.59% of their lives diving at sea, 7.06% at the sea surface, and 15.35% hauled out on land. Some segregation was observed in maximum dive depths and depth use between male and female animals-males evidently being physiologically more capable of exploiting increased depths. Females and males spent 86.98 and 80.89% of their lives at sea, respectively. While at sea, all animals spent more time between 300 and 400 m depth, than any other depth category. Males and females spent comparable percentages of their lifetimes below 100 m depth (males: 65.54%; females: 68.92%), though males spent 8.98% of their lives at depths in excess of 700 m, compared to females' 1.84% at such depths. Adult males often performed benthic dives in excess of 2,000 m, including the deepest known recorded dive of any air-breathing vertebrate (>2,133 m). Our results provide a close approximation of vertical habitat use by southern elephant seals, extrapolated over their lifespans, and we discuss some physiological and developmental implications of their variable depth use.
Resumo:
Sexual segregation in habitat use occurs in a number of animal species, including southern elephant seals, where differences in migration localities and dive behaviour between sexes have been recorded. Due to the extreme sexual size dimorphism exhibited by southern elephant seals, it is unclear whether observed differences in dive behaviour are due to increased physiological capacity of males, compared to females, or differences in activity budgets and foraging behaviour. Here we use a mixed-effects modelling approach to investigate the effects of sex, size, age and individual variation on a number of dive parameters measured on southern elephant seals from Marion Island. Although individual variation accounted for substantial portions of total model variance for many response variables, differences in maximum and targeted dive depths were always influenced by sex, and only partly by body length. Conversely, dive durations were always influenced by body length, while sex was not identified as a significant influence. These results support hypotheses that physiological capability associated with body size is a limiting factor on dive durations. However, differences in vertical depth use appear to be the result of differences in forage selection between sexes, rather than a by-product of the size dimorphism displayed by this species. This provides further support for resource partitioning and possible avoidance of inter-sexual competition in southern elephant seals.
Resumo:
Marine mammals forage in dynamic environments characterized by variables that are continuously changing in relation to large-scale oceanographic processes. In the present study, behavioural states of satellite-tagged juvenile southern elephant seals (n = 16) from Marion Island were assessed for each reliable location, using variation in turning angle and speed in a state-space modelling framework. A mixed modelling approach was used to analyse the behavioural response of juvenile southern elephant seals to sea-surface temperature and proximity to frontal and bathymetric features. The findings emphasised the importance of frontal features as potentially rewarding areas for foraging juvenile southern elephant seals and provided further evidence of the importance of the area west of Marion Island for higher trophic-level predators. The importance of bathymetric features during the transit phase of juvenile southern elephant seal migrations indicates the use of these features as possible navigational cues.
Resumo:
This study reconstructs middle and late Holocene vegetation and climate dynamics in the Oshima Peninsula, SW Hokkaido, using the published method of biome reconstruction and modern analogue technique applied to the Yakumo pollen record (42°17'03''N, 140°15'34''E) spanning the last 5500 years. Two previously published matrices assigning Japanese plant/pollen taxa to the major vegetation types (biomes) are tested using a newly compiled dataset of 78 surface pollen spectra from Hokkaido. With both matrices showing strengths and weaknesses in reconstructing cool mixed and temperate deciduous forests of Hokkaido, the results suggest the necessity to consider the whole list of identified terrestrial pollen taxa for generating robust vegetation reconstructions for northern Japan. Applied to the fossil pollen data, both biome-reconstruction approaches demonstrate consistently that oak-dominated cool mixed forest spread in the study region between 5.5 and 3.6 cal ka BP and was subsequently replaced by beech-dominated temperate deciduous forest. The pollen-based climate reconstruction suggests this change in the vegetation composition was caused by a shift from cooler and drier than present climate to warmer and wetter, similar to modern conditions about 3.6 cal ka BP. Comparing the pollen-based reconstruction results with the published marine records from the NW Pacific, the reconstructed vegetation and climate dynamics can be satisfactorily explained by the greater role played by the warm Tsushima Current in the Sea of Japan and in the Tsugaru Strait during the middle and late Holocene. An increase in sea surface temperatures west and south of the study site would favour air temperature rise and moisture uptake and cause an increase in precipitation and snow accumulation in the western part of Hokkaido during the late Holocene.
Resumo:
Appropriate field data are required to check the reliability of hydrodynamic models simulating the dispersion of soluble substances in the marine environment. This study deals with the collection of physical measurements and soluble tracer data intended specifically for this kind of validation. The intensity of currents as well as the complexity of topography and tides around the Cap de La Hague in the center of the English Channel makes it one of the most difficult areas to represent in terms of hydrodynamics and dispersion. Controlled releases of tritium - in the form of HTO - are carried out in this area by the AREVA-NC plant, providing an excellent soluble tracer. A total of 14 493 measurements were acquired to track dispersion in the hours and days following a release. These data, supplementing previously gathered data and physical measurements (bathymetry, water-surface levels, Eulerian and Lagrangian current studies) allow us to test dispersion models from the hour following release to periods of several years which are not accessible with dye experiments. The dispersion characteristics are described and methods are proposed for comparing models against measurements. An application is proposed for a 2 dimensions high-resolution numerical model. It shows how an extensive dataset can be used to build, calibrate and validate several aspects of the model in a highly dynamic and macrotidal area: tidal cycle timing, tidal amplitude, fixed-point current data, hodographs. This study presents results concerning the model's ability to reproduce residual Lagrangian currents, along with a comparison between simulation and high-frequency measurements of tracer dispersion. Physical and tracer data are available from the SISMER database of IFREMER (www.ifremer.fr/sismer/catal). This tool for validation of models in macro-tidal seas is intended to be an open and evolving resource, which could provide a benchmark for dispersion model validation.
Resumo:
In order to gain insights into species-level behavioural responses to the physical environment, it is necessary to obtain information from various populations and at all times of year. We analysed the influences of physical environmental parameters on the mid-summer dive behaviour of Weddell seals (Leptonychotes weddellii) from a little-known population at Atka Bay, Antarctica. Dive depth distributions followed a typical bimodal pattern also exhibited by seals from other populations and seals targeted both shallow water layers of <50 m and depths near the seafloor. Increased stratification of temperature layers within the water column resulted in increased forage efforts by the seals through relatively high numbers of dives to the seafloor, as well as forage effort associated with shallow dives. We interpret these behavioural responses to be due to increased water temperature stratification resulting in the concentration of prey species in particular depth layers.
Resumo:
High temporal resolution (three hours) records of temperature, wind speed and sea level pressure recorded at Antarctic research station Neumayer (70°S, 8°W) during 1982-2011 are analysed to identify oscillations from daily to intraseasonal timescales. The diurnal cycle dominates the three-hourly time series of temperature during the Antarctic summer and is almost absent during winter. In contrast, the three-hourly time series of wind speed and sea level pressure show a weak diurnal cycle. The dominant pattern of the intraseasonal variability of these quantities, which captures the out-of-phase variation of temperature and wind speed with sea level pressure, shows enhanced variability at timescales of ~ 40 days and ~ 80 days, respectively. Correlation and composite analysis reveal that these oscillations may be related to tropical intraseasonal oscillations via large-scale eastward propagating atmospheric circulation wave-trains. The second pattern of intraseasonal variability, which captures in-phase variations of temperature, wind and sea level pressure, shows enhanced variability at timescales of ~ 35, ~ 60 and ~ 120 days. These oscillations are attributed to the Southern Annular Mode/Antarctic Oscillation (SAM/AAO) which shows enhanced variability at these timescales. We argue that intraseasonal oscillations of tropical climate and SAM/AAO are related to distinct patterns of climate variables measured at Neumayer.
Resumo:
The at-sea behaviour of marine top predators provides valuable insights into the distribution of prey species and strategies used by predators to exploit patchily distributed resources. We describe the water column usage and dive strategies of female southern elephant seals from Marion Island tracked between 2004 and 2008. Dives representing increases in forage effort were identified using a method that combines dive type analyses and the calculation of relative amounts of time that animals spend in the bottom phases of dives. Results from this analysis indicate that female elephant seals from Marion Island tend to display lower levels of forage effort closer to the island and display intensive opportunistic forage bouts that occur at a minimum distance of approximately 215 km from the island. Females from Marion Island dived deeper and for longer periods of time, compared to females from other populations. Most animals displayed positive diel vertical migration, evidently foraging pelagically on vertically migrating prey. A few animals displayed periods of reverse (negative) diel vertical migration, however, diving to deeper depths at night, compared to daytime. This behaviour is difficult to explain and prey species targeted during such periods unknown. Our results illustrate plasticity in foraging behaviour of southern elephant seals, as well as inter-population differences in forage strategies.
Resumo:
West Antarctic ice shelves have thinned dramatically over recent decades. Oceanographic measurements that explore connections between offshore warming and transport across a continental shelf with variable bathymetry toward ice shelves are needed to constrain future changes in melt rates. Six years of seal-acquired observations provide extensive hydrographic coverage in the Bellingshausen Sea, where ship-based measurements are scarce. Warm but modified Circumpolar Deep Water floods the shelf and establishes a cyclonic circulation within the Belgica Trough with flow extending toward the coast along the eastern boundaries and returning to the shelf break along western boundaries. These boundary currents are the primary water mass pathways that carry heat toward the coast and advect ice shelf meltwater offshore. The modified Circumpolar Deep Water and meltwater mixtures shoal and thin as they approach the continental slope before flowing westward at the shelf break, suggesting the presence of the Antarctic Slope Current. Constraining meltwater pathways is a key step in monitoring the stability of the West Antarctic Ice Sheet.
Resumo:
We describe the habitat use of 22 male southern elephant seals (Mirounga leonina) satellite tagged at Marion Island between 2004 and 2008. While a few areas of increased utilization appeared to be associated with areas of shallower bathymetry (such as sea-floor ridges and fracture zones), seals in our study did not target other areas of shallow bathymetry within close proximity to Marion Island. Rather, most elephant seals foraged pelagically over very deep water where much variation was evident in diel vertical migration strategies. These strategies resulted in generally deeper and longer dives than what has been reported for male elephant seals from other colonies. No significant differences were recorded for dive durations or dive depths between adults and sub-adults. However, younger animals displayed a positive relationship between dive durations and age, as well as between dive depths and age, while these relationships became negative for older animals. Mixed model outputs suggested that seals increased their aerobic fitness as migrations progressed, enabling them to undertake longer dives. We conclude that Marion Island male elephant seals exhibit much variability in dive strategy and are seemingly capable of exploiting a range of different prey types occurring in various depth layers.
Resumo:
Understanding the distribution and foraging ecology of major consumers within pelagic systems, specifically in relation to physical parameters, can be important for the management of bentho-pelagic systems undergoing rapid change associated with global climate change and other anthropogenic disturbances such as fishing (i.e., the Antarctic Peninsula and Scotia Sea). We tracked 11 adult male southern elephant seals (Mirounga leonina), during their five-month post-moult foraging migrations from King George Island (Isla 25 de Mayo), northern Antarctic Peninsula, using tags capable of recording and transmitting behavioural data and in situ temperature and salinity data. Seals foraged mostly within the Weddell-Scotia Confluence, while a few foraged along the western Antarctic Peninsula shelf of the Bellingshausen Sea. Mixed model outputs suggest that the at-sea behaviour of seals was associated with a number of environmental parameters, especially seafloor depth, sea-ice concentrations and the temperature structure of the water column. Seals increased dive bottom times and travelled at slower speeds in shallower areas and areas with increased sea-ice concentrations. Changes in dive depth and durations, as well as relative amount of time spent during the bottom phases of dives, were observed in relation to differences in overall temperature gradient, likely as a response to vertical changes in prey distribution associated with temperature stratification in the water column. Our results illustrate the likely complex influences of bathymetry, hydrography and sea ice on the behaviour of male southern elephant seals in a changing environment and highlight the need for region-specific approaches to studying environmental influences on behaviour.