6 resultados para data-driven virtual organizations
em Publishing Network for Geoscientific
Resumo:
Coral reefs represent major accumulations of calcium carbonate (CaCO3). The particularly labyrinthine network of reefs in Torres Strait, north of the Great Barrier Reef (GBR), has been examined in order to estimate their gross CaCO3 productivity. The approach involved a two-step procedure, first characterising and classifying the morphology of reefs based on a classification scheme widely employed on the GBR and then estimating gross CaCO3 productivity rates across the region using a regional census-based approach. This was undertaken by independently verifying published rates of coral reef community gross production for use in Torres Strait, based on site-specific ecological and morphological data. A total of 606 reef platforms were mapped and classified using classification trees. Despite the complexity of the maze of reefs in Torres Strait, there are broad morphological similarities with reefs in the GBR. The spatial distribution and dimensions of reef types across both regions are underpinned by similar geological processes, sea-level history in the Holocene and exposure to the same wind/wave energetic regime, resulting in comparable geomorphic zonation. However, the presence of strong tidal currents flowing through Torres Strait and the relatively shallow and narrow dimensions of the shelf exert a control on local morphology and spatial distribution of the reef platforms. A total amount of 8.7 million tonnes of CaCO3 per year, at an average rate of 3.7 kg CaCO3 m-2 yr-1 (G), were estimated for the studied area. Extrapolated production rates based on detailed and regional census-based approaches for geomorphic zones across Torres Strait were comparable to those reported elsewhere, particularly values for the GBR based on alkalinity-reduction methods. However, differences in mapping methodologies and the impact of reduced calcification due to global trends in coral reef ecological decline and changing oceanic physical conditions warrant further research. The novel method proposed in this study to characterise the geomorphology of reef types based on classification trees provides an objective and repeatable data-driven approach that combined with regional census-based approaches has the potential to be adapted and transferred to different coral reef regions, depicting a more accurate picture of interactions between reef ecology and geomorphology.
Resumo:
We introduce two probabilistic, data-driven models that predict a ship's speed and the situations where a ship is probable to get stuck in ice based on the joint effect of ice features such as the thickness and concentration of level ice, ice ridges, rafted ice, moreover ice compression is considered. To develop the models to datasets were utilized. First, the data from the Automatic Identification System about the performance of a selected ship was used. Second, a numerical ice model HELMI, developed in the Finnish Meteorological Institute, provided information about the ice field. The relations between the ice conditions and ship movements were established using Bayesian learning algorithms. The case study presented in this paper considers a single and unassisted trip of an ice-strengthened bulk carrier between two Finnish ports in the presence of challenging ice conditions, which varied in time and space. The obtained results show good prediction power of the models. This means, on average 80% for predicting the ship's speed within specified bins, and above 90% for predicting cases where a ship may get stuck in ice. We expect this new approach to facilitate the safe and effective route selection problem for ice-covered waters where the ship performance is reflected in the objective function.
Resumo:
The analysis of research data plays a key role in data-driven areas of science. Varieties of mixed research data sets exist and scientists aim to derive or validate hypotheses to find undiscovered knowledge. Many analysis techniques identify relations of an entire dataset only. This may level the characteristic behavior of different subgroups in the data. Like automatic subspace clustering, we aim at identifying interesting subgroups and attribute sets. We present a visual-interactive system that supports scientists to explore interesting relations between aggregated bins of multivariate attributes in mixed data sets. The abstraction of data to bins enables the application of statistical dependency tests as the measure of interestingness. An overview matrix view shows all attributes, ranked with respect to the interestingness of bins. Complementary, a node-link view reveals multivariate bin relations by positioning dependent bins close to each other. The system supports information drill-down based on both expert knowledge and algorithmic support. Finally, visual-interactive subset clustering assigns multivariate bin relations to groups. A list-based cluster result representation enables the scientist to communicate multivariate findings at a glance. We demonstrate the applicability of the system with two case studies from the earth observation domain and the prostate cancer research domain. In both cases, the system enabled us to identify the most interesting multivariate bin relations, to validate already published results, and, moreover, to discover unexpected relations.