786 resultados para data elements

em Publishing Network for Geoscientific


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Visual cluster analysis provides valuable tools that help analysts to understand large data sets in terms of representative clusters and relationships thereof. Often, the found clusters are to be understood in context of belonging categorical, numerical or textual metadata which are given for the data elements. While often not part of the clustering process, such metadata play an important role and need to be considered during the interactive cluster exploration process. Traditionally, linked-views allow to relate (or loosely speaking: correlate) clusters with metadata or other properties of the underlying cluster data. Manually inspecting the distribution of metadata for each cluster in a linked-view approach is tedious, specially for large data sets, where a large search problem arises. Fully interactive search for potentially useful or interesting cluster to metadata relationships may constitute a cumbersome and long process. To remedy this problem, we propose a novel approach for guiding users in discovering interesting relationships between clusters and associated metadata. Its goal is to guide the analyst through the potentially huge search space. We focus in our work on metadata of categorical type, which can be summarized for a cluster in form of a histogram. We start from a given visual cluster representation, and compute certain measures of interestingness defined on the distribution of metadata categories for the clusters. These measures are used to automatically score and rank the clusters for potential interestingness regarding the distribution of categorical metadata. Identified interesting relationships are highlighted in the visual cluster representation for easy inspection by the user. We present a system implementing an encompassing, yet extensible, set of interestingness scores for categorical metadata, which can also be extended to numerical metadata. Appropriate visual representations are provided for showing the visual correlations, as well as the calculated ranking scores. Focusing on clusters of time series data, we test our approach on a large real-world data set of time-oriented scientific research data, demonstrating how specific interesting views are automatically identified, supporting the analyst discovering interesting and visually understandable relationships.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The analysis of time-dependent data is an important problem in many application domains, and interactive visualization of time-series data can help in understanding patterns in large time series data. Many effective approaches already exist for visual analysis of univariate time series supporting tasks such as assessment of data quality, detection of outliers, or identification of periodically or frequently occurring patterns. However, much fewer approaches exist which support multivariate time series. The existence of multiple values per time stamp makes the analysis task per se harder, and existing visualization techniques often do not scale well. We introduce an approach for visual analysis of large multivariate time-dependent data, based on the idea of projecting multivariate measurements to a 2D display, visualizing the time dimension by trajectories. We use visual data aggregation metaphors based on grouping of similar data elements to scale with multivariate time series. Aggregation procedures can either be based on statistical properties of the data or on data clustering routines. Appropriately defined user controls allow to navigate and explore the data and interactively steer the parameters of the data aggregation to enhance data analysis. We present an implementation of our approach and apply it on a comprehensive data set from the field of earth bservation, demonstrating the applicability and usefulness of our approach.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Today's digital libraries (DLs) archive vast amounts of information in the form of text, videos, images, data measurements, etc. User access to DL content can rely on similarity between metadata elements, or similarity between the data itself (content-based similarity). We consider the problem of exploratory search in large DLs of time-oriented data. We propose a novel approach for overview-first exploration of data collections based on user-selected metadata properties. In a 2D layout representing entities of the selected property are laid out based on their similarity with respect to the underlying data content. The display is enhanced by compact summarizations of underlying data elements, and forms the basis for exploratory navigation of users in the data space. The approach is proposed as an interface for visual exploration, leading the user to discover interesting relationships between data items relying on content-based similarity between data items and their respective metadata labels. We apply the method on real data sets from the earth observation community, showing its applicability and usefulness.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Bivalve shells can provide excellent archives of past environmental change but have not been used to interpret ocean acidification events. We investigated carbon, oxygen and trace element records from different shell layers in the mussels Mytilus galloprovincialis combined with detailed investigations of the shell ultrastructure. Mussels from the harbour of Ischia (Mediterranean, Italy) were transplanted and grown in water with mean pHT 7.3 and mean pHT 8.1 near CO2 vents on the east coast of the island. Most prominently, the shells recorded the shock of transplantation, both in their shell ultrastructure, textural and geochemical record. Shell calcite, precipitated subsequently under acidified seawater responded to the pH gradient by an in part disturbed ultrastructure. Geochemical data from all test sites show a strong metabolic effect that exceeds the influence of the low-pH environment. These field experiments showed that care is needed when interpreting potential ocean acidification signals because various parameters affect shell chemistry and ultrastructure. Besides metabolic processes, seawater pH, factors such as salinity, water temperature, food availability and population density all affect the biogenic carbonate shell archive.