3 resultados para customized treadmill
em Publishing Network for Geoscientific
Resumo:
This article presents and technically describes a new field spectro-goniometer system for the ground-based characterization of the surface reflectance anisotropy under natural illumination conditions developed at the Alfred Wegener Institute (AWI). The spectro-goniometer consists of a Manual Transportable Instrument platform for ground-based Spectro-directional observations (ManTIS), and a hyperspectral sensor system. The presented measurement strategy shows that the AWI ManTIS field spectro-goniometer can deliver high quality hemispherical conical reflectance factor (HCRF) measurements with a pointing accuracy of ±6 cm within the constant observation center. The sampling of a ManTIS hemisphere (up to 30° viewing zenith, 360° viewing azimuth) needs approx. 18 min. The developed data processing chain in combination with the software used for the semi-automatic control provides a reliable method to reduce temporal effects during the measurements. The presented visualization and analysis approaches of the HCRF data of an Arctic low growing vegetation showcase prove the high quality of spectro-goniometer measurements. The patented low-cost and lightweight ManTIS instrument platform can be customized for various research needs and is available for purchase.
Resumo:
Knowledge of habitat use by top marine predators in response to environmental conditions is crucial in the current context of global changes occurring in the Southern Ocean. We examined the at-sea locations of male Adelie penguins (Pygoscelis adeliae) breeding at Dumont d'Urville during their first, long incubation trip. Compared with the chick-rearing period, penguins performed longer trips, going to oceanic waters as far as 320 km from the colony. We observed 3 strategies: (1) five individuals covered large distances to the north, targeting open-ocean areas and following the currents of two persistent eddies; (2) five individuals foraged to the north-west, close to the Antarctic shelf slope at the limit of the pack ice; and (3) three individuals covered much shorter distances (northwards or eastwards). The foraging range also seemed to be limited by the body condition of the penguins before their departure to sea.
Resumo:
Phosphorus cycling in the ocean is influenced by biological and geochemical processes that are reflected in the oxygen isotope signature of dissolved inorganic phosphate (Pi). Extending the Pi oxygen isotope record from the water column into the seabed is difficult due to low Pi concentrations and small amounts of marine porewaters available for analysis. We obtained porewater profiles of Pi oxygen isotopes using a refined protocol based on the original micro-extraction designed by Colman (2002). This refined and customized method allows the conversion of ultra-low quantities (0.5 - 1 µmol) of porewater Pi to silver phosphate (Ag3PO4) for routine analysis by mass spectrometry. A combination of magnesium hydroxide co-precipitation with ion exchange resin treatment steps is used to remove dissolved organic matter, anions, and cations from the sample before precipitating Ag3PO4. Samples as low as 200 µg were analyzed in a continuous flow isotope ratio mass spectrometer setup. Tests with external and laboratory internal standards validated the preservation of the original phosphate oxygen isotope signature (d18OP) during micro extraction. Porewater data on d18OP has been obtained from two sediment cores of the Moroccan margin. The d18OP values are in a range of +19.49 to +27.30 per mill. We apply a simple isotope mass balance model to disentangle processes contributing to benthic P cycling and find evidence for Pi regeneration outbalancing microbial demand in the upper sediment layers. This highlights the great potential of using d18OP to study microbial processes in the subseafloor and at the sediment water interface.