3 resultados para curvilinear

em Publishing Network for Geoscientific


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The CMCC Global Ocean Physical Reanalysis System (C-GLORS) is used to simulate the state of the ocean in the last decades. It consists of a variational data assimilation system (OceanVar), capable of assimilating all in-situ observations along with altimetry data, and a forecast step performed by the ocean model NEMO coupled with the LIM2 sea-ice model. KEY STRENGTHS: - Data are available for a large number of ocean parameters - An extensive validation has been conducted and is freely available - The reanalysis is performed at high resolution (1/4 degree) and spans the last 30 years KEY LIMITATIONS: - Quality may be discontinuos and depend on observation coverage - Uncertainty estimates are simply derived through verification skill scores

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fast-flowing ice streams discharge most of the ice from the interior of the Antarctic Ice Sheet coastward. Understanding how their tributary organisation is governed and evolves is essential for developing reliable models of the ice sheet's response to climate change. Despite much research on ice-stream mechanics, this problem is unsolved, because the complexity of flow within and across the tributary networks has hardly been interrogated. Here I present the first map of planimetric flow convergence across the ice sheet, calculated from satellite measurements of ice surface velocity, and use it to explore this complexity. The convergence map of Antarctica elucidates how ice-stream tributaries draw ice from the interior. It also reveals curvilinear zones of convergence along lateral shear margins of streaming, and abundant convergence ripples associated with nonlinear ice rheology and changes in bed topography and friction. Flow convergence on ice-stream tributaries and their feeding zones is markedly uneven, and interspersed with divergence at distances of the order of kilometres. For individual drainage basins as well as the ice sheet as a whole, the range of convergence and divergence decreases systematically with flow speed, implying that fast flow cannot converge or diverge as much as slow flow. I therefore deduce that flow in ice-stream networks is subject to mechanical regulation that limits flow-orthonormal strain rates. These properties and the gridded data of convergence and flow-orthonormal strain rate in this archive provide targets for ice- sheet simulations and motivate more research into the origin and dynamics of tributarization.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We report dissolved sulfide sulfur concentrations and the sulfur isotopic composition of dissolved sulfate and sulfide in pore waters from sediments collected during Ocean Drilling Program Leg 204. Porewater sulfate is depleted rapidly as the depth to the sulfate/methane interface (SMI) occurs between 4.5 and 11 meters below seafloor at flank and basin locations. Dissolved sulfide concentration reaches values as high as 11.3 mM in Hole 1251E. Otherwise, peak sulfide concentrations lie between 3.2 and 6.1 mM and occur immediately above the SMI. The sulfur isotopic composition of interstitial sulfate generally becomes enriched in 34S with increasing sediment depth. Peak d34S-SO4 values occur just above the SMI and reach up to 53.1 per mil Vienna Canyon Diablo Troilite (VCDT) in Hole 1247B. d34S-Sigma HS values generally parallel the trend of d34S-SO4 values but are more depleted in 34S relative to sulfate, with values from -12.7 per mil to 19.3 per mil VCDT. Curvilinear sulfate profiles and carbon isotopic composition of total dissolved carbon dioxide at flank and basin sites strongly suggest that sulfate depletion is controlled by oxidation of sedimentary organic matter, despite the presence of methane gas hydrates in underlying sediments. Preliminary data from sulfur species are consistent with this interpretation for Leg 204 sediments at sites not located on or near the crest of Hydrate Ridge.