2 resultados para cultivated tomato
em Publishing Network for Geoscientific
Resumo:
High salinity is a severe constraint on tomato growth and productivity in many regions and situations. To obtain an ideal gene donor for improving the salt tolerance of tomato cultivars, the potential of tolerance response to salinity were evaluated for 14 tomato accessions including wild and cultivated species. By investigation of seed germination and seedling survival, a common cultivar, Solanum lycopersicum 'moneymaker', is evidenced significantly salt-tolerant among them and correspondingly, a wild accession, Solanum cheesmanniae 'LA0317', is most vulnerable to salinity. The performance of Moneymaker and LA0317 upon salinity was then compared in detail for their growth inhibition and some physiological changes. Complete dominance of Moneymaker and its high gene identity in tomato species lead us to use it in microarray experiment and apply it as gene donor for salt tolerance. The results indicated some mechanism differences between Moneymaker and LA0317 in salt response, proposed the potentially high salt tolerance of cultivated tomato and implied that Moneymaker is a valuable gene donor in this field, potentially minimizing the growth inhibition and yield reduction in transgenic plants.
Resumo:
The moist evergreen Afromontane forest of SW Ethiopia has become extremely fragmented and most remnants are intensively managed for cultivation of coffee (Coffea arabica). We investigated the distributions of epiphytic orchids in shade trees and their understory in forests with contrasting management intensity to determine biodiversity losses associated with coffee cultivation and to determine the capacity of coffee shrubs to act as refugia for orchid species. We studied epiphytic orchids in managed forests and natural forests and recorded orchid diversity and abundance in different tree zones of 339 trees and in the understory. Coffee management was associated with a downward shift of orchid species as orchid species were occurring in significantly lower tree zones in managed forest. The number of shrubs in the understory of managed forest was not higher than in natural forests, yet orchid abundance was higher in the understory of managed forests. Local extinctions of epiphytic orchids and species losses in the outer tree zones (a contraction of habitat) in managed forests are most likely driven by losses of large, complex-structured climax trees, and changes in microclimate, respectively. Coffee shrubs and their shade trees in managed forests are shown here to be a suitable habitat for only a limited set of orchid species. As farmers continue to convert natural forest into managed forest for coffee cultivation, further losses of habitat quality and collateral declines in regional epiphytic orchid diversity can be expected. Therefore, the conservation of epiphytic orchid diversity, as well as other components of diversity of the coffee forests, must primarily rely on avoiding coffee management intensification in the remaining natural forest. Convincing farmers to keep forest-climax trees in their coffee forest and to tolerate orchids on their coffee shrubs may also contribute to a more favorable conservation status of orchids in Ethiopian coffee agroecosystems.