12 resultados para cryo-sonication

em Publishing Network for Geoscientific


Relevância:

10.00% 10.00%

Publicador:

Resumo:

On the basis of the radiocarbon (14C) plateau-tuning method a new age model for Timor Sea Core MD01-2378 was established. It revealed a precise centennial-scale phasing of climate events in the ocean, cryo-, and atmosphere during the last deglacial and provides important new insights into causal linkages controlling events of global climate change. At Site MD01-2378 reservoir ages of surface waters dropped from 1600 yr prior to 20 cal ka to 250-500 yr after 18.8 cal ka. This evidence was crucial for generating a high-resolution age model for deglacial events in the Indo-Pacific Warm Pool. Sea-surface temperatures (SST) started to change near 18.8 cal ka, that is ~500 yr after the start of, presumably northern hemispheric, deglacial melt and sea level rise as shown by the benthic foraminiferal oxygen isotope ratio (d18O). However, the SST rise occurred 500-1000 yr prior to the onset of deglacial Antarctic warming and the first major rise in atmospheric carbon dioxide at about 18 ka. The increase in SST may partly reflect reduced seasonal upwelling of cold subsurface waters along the eastern margin of the Indian Ocean, which is reflected by a doubling of the thermal gradient between the sea surface and the thermocline, a halving of chlorin productivity from 19 to 18.5 cal ka, and in particular, by the strong decrease in surface water reservoir ages. Two significant increases in deglacial Timor Sea surface salinities from 19-18.5 and 15.5-14.5 cal ka, may partly reflect the deglacial increase in the distance of local river mouths, partly an inter-hemispheric millennial-scale see-saw in tropical monsoon intensity, possibly linked to a deglacial increase in the dominance of Pacific El Niño regimes over Heinrich stadial 1.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We report oxygen and carbon stable isotope analyses of foraminifers, primarily planktonic, sampled at low resolution in the Cretaceous and Paleogene sections from Sites 1257, 1258, and 1260. Data from two samples from Site 1259 are also reported. The very low resolution of the data only allows us to detect climate-driven isotopic events on the timescale of more than 500 k.y. A several million-year-long interval of overall increase in planktonic 18O is seen in the Cenomanian at Site 1260. Before and after this interval, foraminifers from Cenomanian and Turonian black shales have d18O values in the range -4.2 per mil to -5.0 per mil, suggestive of upper ocean temperatures higher than modern tropical values. The d18O values of upper ocean dwelling Paleogene planktonics exhibit a long-term increase from the early Eocene to the middle Eocene. During shipboard and postcruise processing, it proved difficult to extract well-preserved foraminifer tests from black shales by conventional techniques. Here, we report results of a test of procedures for cleaning foraminifers in Cretaceous organic-rich mudstone sediments using various combinations of soaking in bleach, Calgon/hydrogen peroxide, or Cascade, accompanied by drying, repeat soaking, or sonication. A procedure that used 100% bleach, no detergent, and no sonication yielded the largest number of clean, whole individual foraminifers with the shortest preparation time. We found no significant difference in d18O or d13C values among sets of multiple samples of the planktonic foraminifer Whiteinella baltica extracted following each cleaning procedure.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The state of preservation of natural gas hydrate samples, recovered from 6 sites drilled during ODP Leg 204 at southern summit of Hydrate Ridge, Oregon Margin, has been investigated by X-ray diffraction (XRD) and cryo-scanning-electron-microscopy (cryo-SEM) techniques. A detailed characterization of the state of decomposition of gas hydrates is necessary since no pressurized autoclave tools were used for sampling and partial dissociation must have occurred during recovery prior to the quench and storage in liquid nitrogen. Samples from 16 distinct horizons have been investigated by synchrotron X-ray diffraction measurements at HASYLAB/ Hamburg. A full profile fitting analysis ("Rietveld method") of synchrotron XRD data provides quantitative phase determinations of the major sample constituents such as gas hydrate structure I (sI), hexagonal ice (Ih) and quartz. The ice content (Ih) in each sample is related to frozen water composed of both original existing pore water and the water from decomposed hydrates. Hydrate contents as measured by diffraction vary between 0 and 68 wt.% in the samples we measured. Samples with low hydrate content usually show micro-structural features in cryo-SEM ascribed to extensive decomposition. Comparing the appearance of hydrates at different scales, the grade of preservation seems to be primarily correlated with the contiguous volume of the original existing hydrate; the dissociation front appears to be indicated by micrometer-sized pores in a dense ice matrix.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We report the first microbiological characterization of a terrestrial methane seep in a cryo-environment in the form of an Arctic hypersaline (~24% salinity), subzero (-5 C), perennial spring, arising through thick permafrost in an area with an average annual air temperature of -15 C. Bacterial and archaeal 16S rRNA gene clone libraries indicated a relatively low diversity of phylotypes within the spring sediment (Shannon index values of 1.65 and 1.39, respectively). Bacterial phylotypes were related to microorganisms such as Loktanella, Gillisia, Halomonas and Marinobacter spp. previously recovered from cold, saline habitats. A proportion of the bacterial phylotypes were cultured, including Marinobacter and Halomonas, with all isolates capable of growth at the in situ temperature (-5 C). Archaeal phylotypes were related to signatures from hypersaline deep-sea methane-seep sediments and were dominated by the anaerobic methane group 1a (ANME-1a) clade of anaerobic methane oxidizing archaea. CARD-FISH analyses indicated that cells within the spring sediment consisted of ~84.0% bacterial and 3.8% archaeal cells with ANME-1 cells accounting for most of the archaeal cells. The major gas discharging from the spring was methane (~50%) with the low CH4/C2 + ratio and hydrogen and carbon isotope signatures consistent with a thermogenic origin of the methane. Overall, this hypersaline, subzero environment supports a viable microbial community capable of activity at in situ temperature and where methane may behave as an energy and carbon source for sustaining anaerobic oxidation of methane-based microbial metabolism. This site also provides a model of how a methane seep can form in a cryo-environment as well as a mechanism for the hypothesized Martian methane plumes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Gas hydrate samples from various locations in the Gulf of Mexico (GOM) differ considerably in their microstructure. Distinct microstructure characteristics coincide with discrete crystallographic structures, gas compositions and calculated thermodynamic stabilities. The crystallographic structures were established by X-ray diffraction, using both conventional X-ray sources and high-energy synchrotron radiation. The microstructures were examined by cryo-stage Field-Emission Scanning Electron Microscopy (FE-SEM). Good sample preservation was warranted by the low ice fractions shown from quantitative phase analyses. Gas hydrate structure II samples from the Green Canyon in the northern GOM had methane concentrations of 70-80% and up to 30% of C2-C5 of measured hydrocarbons. Hydrocarbons in the crystallographic structure I hydrate from the Chapopote asphalt volcano in the southern GOM was comprised of more than 98% methane. Fairly different microstructures were identified for those different hydrates: Pores measuring 200-400 nm in diameter were present in structure I gas hydrate samples; no such pores but dense crystal surfaces instead were discovered in structure II gas hydrate. The stability of the hydrate samples is discussed regarding gas composition, crystallographic structure and microstructure. Electron microscopic observations showed evidence of gas hydrate and liquid oil co-occurrence on a micrometer scale. That demonstrates that oil has direct contact to gas hydrates when it diffuses through a hydrate matrix.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The anaerobic oxidation of methane (AOM) with sulfate as terminal electron acceptor is mediated by consortia of methanotrophic archaea (ANME) and sulfate-reducing bacteria (SRB). In sediment samples from Hydrate Ridge, the Isis Mud Volcano and the Gulf of Mexico, DSS cells accounted for 3-6% of all DAPI-stained single cells. Out of these, 8-17% were labelled with probe SEEP1a-1441. This translated into relative abundances of single SEEP-SRB1a cells of 0.3% to 0.7%. Contrastingly, in a sediment sample from the Gullfaks oil field, DSS cells accounted for 18% and SEEP-SRB1a for 9% of all single cells. This sediment sample also featured an unusually high abundance of single ANME-2 cells and only very few ANME-2/DSS aggregates in comparison with other AOM habitats. Considering also the nature of the sample, it is likely that the high number of single ANME-2 and SEEP-SRB1a cells were an artifact of sample preparation. Here, harsher sonication was required to remove the microorganisms from coarse sand prior to CARD-FISH analysis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We quantified pigment biomarkers by high performance liquid chromatography (HPLC) to obtain a broad taxonomic classification of microphytobenthos (MPB) (i.e. identification of dominant taxa). Three replicate sediment cores were collected at 0, 50 and 100 m along transects 5-9 in Heron Reef lagoon (n=15) (Fig. 1). Transects 1-4 could not be processed because the means to have the samples analysed by HPLC were not available at the time of field data collection. Cores were stored frozen and scrapes taken from the top of each one and placed in cryovials immersed in dry ice. Samples were sent to the laboratory (CSIRO Marine and Atmospheric Research, Hobart, Australia) where pigments were extracted with 100% acetone during fifteen hours at 4°C after vortex mixing (30 seconds) and sonication (15 minutes). Samples were then centrifuged and filtered prior to the analysis of pigment composition with a Waters - Alliance HPLC system equipped with a photo-diode array detector. Pigments were separated using a Zorbax Eclipse XDB-C8 stainless steel 150 mm x 4.6 mm ID column with 3.5 µm particle size (Agilent Technologies) and a binary gradient system with an elevated column temperature following a modified version of the Van Heukelem and Thomas (2001) method. The separated pigments were detected at 436 nm and identified against standard spectra using Waters Empower software. Standards for HPLC system calibration were obtained from Sigma (USA) and DHI (Denmark).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

During a winter expedition to the western Barents Sea in March 2003, benthic amphipods of the species Anonyx sarsi were observed directly below pack ice. Only males and juveniles [16.0-37.0 mm long, 16.2-120.8 mg dry mass (DM)] were collected. Guts contained macroalgal fibres, fish eggs and flesh from large carrion. Amphipods had very low levels of total lipids (2.7-17.2% DM). Analysis of lipid biomarkers showed that some of the specimens had preyed on pelagic copepods. Individual respiration rates ranged over 0.4-1.7 ml O2/day (mean: 1.2 ml, SD: 0.5 ml). Individual ammonia excretion rates varied between 7.8 µg and 49.3 µg N/day (mean: 30.7 µg, SD: 15.2 µg). The atomic O:N ratio ranged over 35 to 71 (mean: 55, SD: 14), indicating lipid-dominated metabolism. Mass-specific respiration ranged over 9.8-16.6 ml O2/day/g DM (mean: 13.1 ml, SD: 2.2 ml). The metabolic rates of A. sarsi were twice as high as those of the truly sympagic amphipod Gammarus wilkitzkii, which is better adapted to the under-ice habitat by its energy-saving attached lifestyle. It is concluded that males and juveniles of A. sarsi were actively searching for food in the water column and at the ice underside, but that the nutritional status of the amphipods in late Arctic winter was generally very poor.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The community structure of sulfate-reducing bacteria (SRB) of a marine Arctic sediment (Smeerenburgfjorden, Svalbard) was characterized by both fluorescence in situ hybridization (FISH) by using group- and genus-specific 16S rRNA-targeted oligonucleotide probes. Samples stored in PBS-ethanol were diluted and treated by mild sonication. A 10-ml aliquot of a 1:40 dilution was filtered onto a 0.2-mm-pore-size type GTTP polycarbonate filter (Millipore, Eschborn, Germany). Hybridization and microscopic counting of hybridized and 49,69-diamidino-2-phenylindole (DAPI)-stained cells were performed as described previously from Snaidr et al. (1997, http://aem.asm.org/content/63/7/2884.full.pdf). Details of probes and formamide concentrations which were used are listed in futher details.. Means were calculated by using 10 to 20 randomly chosen fields for each filter section, which corresponded to 800 to 1,000 DAPI-stained cells. Counting results were always corrected by subtracting signals observed with probe NON338. The SRB community was dominated by members of the Desulfosarcina-Desulfococcus group. This group accounted for up to 73% of the SRB detected. The predominance was shown to be a common feature for different stations along the coast of Svalbard. In a top-to-bottom approach we aimed to further resolve the composition of this large group of SRB by using probes for cultivated genera. While this approach failed, directed cloning of probe-targeted genes encoding 16S rRNA was successful and resulted in sequences which were all affiliated with the Desulfosarcina-Desulfococcus group. A group of clone sequences (group SVAL1) most closely related to Desulfosarcina variabilis (91.2% sequence similarity) was dominant and was shown to be most abundant in situ, accounting for up to 54.8% of the total SRB detected.